
Message Analysis-Guided Allocation and Low-Pause
Incremental Garbage Collection in a Concurrent Language

Konstantinos Sagonas
Dept. of Information Technology

Uppsala University, Sweden

kostis@it.uu.se

Jesper Wilhelmsson
Dept. of Information Technology

Uppsala University, Sweden

jesperw@it.uu.se

ABSTRACT
We present a memory management scheme for a concurrent pro-
gramming language where communication occurs using message-
passing with copying semantics. The runtime system is builtaround
process-local heaps, which frees the memory manager from redun-
dant synchronization in a multithreaded implementation and allows
the memory reclamation of process-local heaps to be a private busi-
ness and to often take place without garbage collection. Theallo-
cator is guided by a static analysis which speculatively allocates
data possibly used as messages in a shared memory area. To re-
spect the (soft) real-time requirements of the language, wedevelop
a generational, incremental garbage collection scheme tailored to
the characteristics of this runtime system. The collector imposes
no overhead on the mutator, requires no costly barrier mechanisms,
and has a relatively small space overhead. We have implemented
these schemes in the context of an industrial-strength implemen-
tation of a concurrent functional language used to develop large-
scale, highly concurrent, embedded applications. Our measure-
ments across a range of applications indicate that the incremen-
tal collector substantially reduces pause times, imposes only very
small overhead on the total runtime, and achieves a high degree of
mutator utilization.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.4 [Programming Languages]:
Processors—memory management (garbage collection), run-time
environments; D.3.2 [Programming Languages]: Language Clas-
sifications—applicative (functional) languages, concurrent and dis-
tributed languages; D.3.3 [Programming Languages]: Language
Constructs and Features—concurrent programming structures, dy-
namic storage management

General Terms
Languages, Performance, Measurement, Experimentation

Keywords
Incremental and real-time garbage collection, thread-local heaps,
concurrent languages, Erlang

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’04,October 24–25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

1. INTRODUCTION
Concurrent, real-time programming languages with automatic

memory management present new challenges to programming lan-
guage implementors. One of them is how to structure the runtime
system of such a language so that it is tailored to the intended use
of data, so that performance does not degrade for highly concur-
rent (i.e., thousands of processes/threads) applications, and so that
the implementation scales well in a multithreaded or a multipro-
cessor setting. Another challenge is to achieve the high level of
responsiveness that is required by applications from domains such
as embedded control and telecommunication systems.

Taking up the latter challenge becomes tricky when automatic
memory management is performed using garbage collection (GC).
The naı̈ve “stop-the-world” approach, where threads repeatedly in-
terrupt execution of a user’s program in order to perform garbage
collection, is clearly inappropriate for applications with real-time
requirements. It is also problematic on principle: it introduces
a point of global synchronization between otherwise independent
threads—and possibly also tasks—and provides no guarantees for
bounds on the length of the individual pauses or for sufficient pro-
gress by the application; see [8] for a discussion of the issues that
are involved.

Despite the significant progress in developing automatic memory
reclamation techniques with real-time characteristics (see e.g., [3,
5, 8, 18, 20]), each technique relies on a number of (often implicit)
assumptions about the architecture of the runtime system that might
not be the most appropriate ones to follow in a different context.
Furthermore, languages have their own characteristics which influ-
ence the trade-offs associated with each technique. For example,
many collectors for object-oriented languages such as Javaassume
that allocating an extra header word for each object does notpe-
nalize execution times by much and does not impose a significant
space overhead. Similarly, the semantics of a language may favor
the use of a read rather than a write barrier, or may allow for more
liberal forms of incremental collection (e.g., based on replication of
objects). Finally, it is clear that the type of GC which is employed
interacts with and is influenced by the allocation which is used. It
is very difficult to come up with techniques that are well-suited for
all runtime environments.
Our contributions.Our first contribution is in the area of run-
time systems architectures for highly concurrent languages where
communication occurs using message-passing. We present the de-
tails of a runtime system whose memory manager splits the allo-
cated memory into areas based on the intended use of data. Its
memory allocator is guided by a static analysis, which speculatively
allocates data possibly used as messages in a shared memory area.
Based on the characteristics of each memory area, we discussthe
various types of garbage collection methods which are employed.

Our second, and main contribution is to develop a generational,
incremental garbage collection scheme for this runtime system. No-
table characteristics are that the collector imposes no noticeable
overhead on the mutator, requires no costly barrier mechanisms,
and has a relatively small space overhead.

Finally, we have implemented this scheme in the context of an
industrial-strength implementation of a concurrent functional lan-
guage, and we report on its performance across a range of “real-
world” applications. When using the incremental collector, through
various optimizations which we discuss in the paper, we are able
to sustain the overall performance of the system, obtain extremely
small pause times, and achieve a high degree of mutator utilization.

2. THE CONTEXT OF OUR WORK
The work reported in this paper is part of an ongoing research

project at Uppsala University in collaboration with the develop-
ment team of the Erlang/OTP system at Ericsson. Prior work has
resulted in the development of the HiPE (High Performance Erlang)
native code compiler [16], which nowadays is fully integrated in the
Erlang/OTP system, and in investigation of the pros and consof al-
ternative runtime system architectures for concurrent languages us-
ing message passing (work reported in [17] and briefly reviewed in
Sect. 2.2). Chief among the current goals of the project are to im-
plement static analyses which determine the intended use ofdata
in highly concurrent languages in order to guide the memory allo-
cator, and to improve the responsiveness of the resulting system by
incorporating garbage collectors with real-time characteristics and
a high rate of mutator utilization.

To set our context, we briefly review the ERLANG language and
the runtime system architectures of the Erlang/OTP system.

2.1 Erlang and Erlang/OTP
ERLANG [2] is a strict, dynamically typed functional program-

ming language with support for concurrency, communication, dis-
tribution and fault-tolerance. It has automatic memory manage-
ment and supports multiple platforms. ERLANG was designed to
ease the programming of soft real-time control systems commonly
developed by the data- and tele-communications industry. Its im-
plementation, the Erlang/OTP system, has so far been used quite
successfully both by Ericsson and by other companies aroundthe
world (e.g., T-Mobile, Nortel Networks) to develop large (several
hundred thousand lines of code) commercial applications.

ERLANG’s basic data types are atoms, numbers (floats and ar-
bitrary precision integers), and process identifiers; compound data
types are lists and tuples. A notation for objects (records in the
ERLANG lingo) is supported, but the underlying implementation of
records is the same as tuples. To allow efficient implementation of
telecommunication protocols, ERLANG also includes abinary data
type (a vector of byte-sized data) and a notation to perform pattern
matching on binaries. There is no destructive assignment ofvari-
ables or data and consequently cyclic references cannot be created.
Because recursion is the only means to express iteration, tail call
optimization is a required feature of ERLANG implementations.

Processes in ERLANG are extremely light-weight (significantly
lighter than OS threads) and their number in typical applications
is quite large (in some cases up to 100,000 processes on a single
node). ERLANG’s concurrency primitives—spawn, “!” (send), and
receive—allow a process to spawn new processes and communi-
cate with other processes through asynchronous message passing
with copying semantics. Any data value can be sent as a message
and the recipient may be located on any machine on the network.
Each process has amailbox, essentially a message queue, where

each message sent to the process will arrive. Message selection
from the mailbox occurs through pattern matching. In send oper-
ations, the receiver is specified by its process identifier, regardless
of where it is located, making distribution all but invisible. To sup-
port robust systems, a process can register to receive a message
if another one terminates. ERLANG also provides a mechanism
that allows a process to timeout while waiting for messages and a
try/catch-style exception mechanism for error handling.

ERLANG is often used in high-availability large-scale embedded
systems (e.g., telephone centers), where down-time is required to
be less than five minutes per year. Such systems cannot be taken
down, upgraded, and restarted when software patches and upgrades
arrive, since that would not respect their availability requirement.
Consequently, an ERLANG system comes with support for upgrad-
ing code while the system is running, a mechanism known asdy-
namic code replacement. Moreover, these systems typically also
require a high-level of responsiveness, and the soft real-time con-
cerns of the language call for fast garbage collection techniques.

The ERLANG language is small, but its implementation comes
with a big set of libraries. With theOpen Telecom Platform(OTP)
middleware, ERLANG is further extended with standard compo-
nents for telecommunication applications (an ASN.1 compiler, the
Mnesia distributed database, servers, state machines, process mon-
itors, tools for load balancing, etc.), standard interfaces such as
CORBA and XML, and a variety of communication protocols (e.g.,
HTTP, FTP, SMTP, etc.).

2.2 The three runtime systems of Erlang/OTP
Until quite recently, the Erlang/OTP runtime system was based

on aprocess-centricarchitecture; i.e., an architecture where each
process allocates and manages its private memory area. The main
reason why this memory allocation scheme was chosen was thatit
was believed it results in lower garbage collection latency. Wanting
to investigate the validity of this belief, in [17] we examined two
alternative runtime system architectures for implementing concur-
rency through message passing: one which iscommunaland all
processes get to share the same heap, and ahybrid scheme where
each process has a private heap for process-local data but where a
shared heap is used for data sent as messages and thus shared be-
tween processes. Nowadays, all three architectures are included in
the Erlang/OTP release. We briefly review their characteristics.

Process-centric In this architecture, interprocess communication
requires copying of messages and thus is anO(n) operation
wheren is the message size. Memory fragmentation tends to
be high. Pros are that the garbage collection times and pauses
are expected to be small (as the root set need only consist
of the stack of the process requiring collection), and upon
termination of a process, its allocated memory area can be
reclaimed in constant time (i.e., without garbage collection).

Communal The biggest advantage is very fast (O(1)) interpro-
cess communication, simply consisting of passing a pointer
to the receiving process, reduced memory requirements due
to message sharing, and low fragmentation. Disadvantages
include having to consider the stacks ofall processes as part
of the root set (resulting in increased GC latency) and pos-
sibly poor cache performance due to processes’ data being
interleaved on the shared heap. Furthermore, the communal
architecture does not scale well to a multithreaded or multi-
processor implementation, since locking would be required
in order to allocate in and collect the shared memory area in
a parallel setting; see [8] for an excellent recent treatment of
the subject of parallel real-time GC.

Hybrid An architecture that tries to combine the advantages of
the above two architectures: interprocess communication can
be fast and GC latency for the frequent collections of the
process-local heaps is expected to be small. No locking is re-
quired for the garbage collection of the process-local heaps,
and the pressure on the shared heap is reduced so that it does
not need to be garbage collected as often. Also, as in the
process-centric architecture, when a process terminates,its
local memory can be reclaimed by simply attaching it to a
free-list.

Note that these runtime system architectures are applicable to all
concurrent systems that use message passing. Their advantages and
disadvantages do not depend in any way on characteristics ofthe
ERLANG language or its current implementation.

In this paper we concentrate on the hybrid architecture. Therea-
sons are both pragmatic and principled: Pragmatic because this ar-
chitecture behaves best in practice, and principled because it com-
bines the best performance characteristics of the other tworuntime
system architectures. Also, the garbage collection techniques de-
veloped in its context are applicable to the other architectures with
only minor adjustments.

Assumptions.Throughout the paper, for simplicity of presen-
tation, we make the assumption that the system is running on a
uniprocessor, and that message passing and garbage collection, al-
though incremental operations, have control over their preemption
(i.e., although they have to respect their work- or time-based quanta,
they cannot be interrupted by the scheduler at arbitrary points when
collecting).

3. ORGANIZATION OF THE HYBRID
ARCHITECTURE

Figure 1 shows an abstraction of the memory organization in the
hybrid architecture. In the figure, areas with lines and stripes show
currently unused memory; the shapes in heaps and arrows repre-
sent objects and pointers. In the shown snapshot, three processes
(P1, P2, and P3) are present. Each process has a process control
block (PCB) and a contiguous private memory area with a stack
and a process-local heap growing toward each other. The sizeof
this memory area is either specified as an argument to thespawn

primitive, set globally by the user for all processes, or defaults to
a small system constant (currently 233 words). Besides the private
areas, there are two shared memory areas in the system; one used
for binaries above a certain size (i.e., a big object area), and a shared
heap area, intended to be used for data sent between processes in
the form of messages. We refer to the latter area as themessage
area.

3.1 The pointer directionality invariants
A key point in the hybrid architecture is to be able to garbage

collect the process-local heaps individually, without looking at the
shared areas. In a multithreaded system, this allows collection of
local heaps without any locking or synchronization. If, on the other
hand, pointers from the shared areas to the local heaps were al-
lowed, these would then have to be traced so that what they point
to would be considered live during a local collection. This could be
achieved by a write barrier, but we want to avoid the overheadthat
this incurs. The alternative, which is our choice, is to maintain as
an invariant of the runtime system that there are no pointersfrom
the shared areas to the local heaps, nor from one process-local area
to another. Figure 1 shows all types of pointers that can exist in the
system. In particular:

����
����
����
����

����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

����
����
����
����

����
����
����
����

���
���
���

���
���
���

Shared Heap (Message Area)

Heap

Stack

PCB

sp

hp

Shared
Area for
Binaries

P1 P2 P3

Process−local

Figure 1: References allowed in the hybrid architecture.

• The area for binaries contains very few references and these
are only from the header of a binary object to the start of the
actual binary; these are shown in the figure. Note that these
pointers will not be seen by the garbage collector.

• The message area only contains references to the shared area
for binaries or to objects within the message area itself.

• Neither the shared area for binaries nor the message area con-
tains any cyclic data.

The pointer directionality property for the message area isalso
crucial for our choice of memory allocation strategy, sinceit makes
it easy to test at runtime whether or not a piece of data resides in
the message area by making a simpleO(1) pointer comparison.
(There are several possible implementations with this complexity,
the simplest being mapping the message area to a single contiguous
block of memory.)

3.2 Allocation in the hybrid architecture
To take full advantage of the organization of the hybrid archi-

tecture, the system needs to be able to distinguish between data
which is process-local and data which is to be shared, i.e., used as
messages. This can be achieved by user annotations on the source
code, by dynamically monitoring the creation of data as proposed
in [13], or by the staticmessage analysisthat we have described
in [6] and integrated in the hybrid runtime system configuration of
Erlang/OTP.

For the purposes of this paper, the details of the message analysis
are unimportant and the interested reader is referred to [6]. Instead,
it suffices to understand how the analysis guides allocationof data
in the compiler. The allocation can be described asallocation by
default on the local heap and shared allocation of possible mes-
sages. More specifically, data that islikely to be part of a message
is allocated speculatively on the shared heap, and all otherdata on
the process-local heaps. To maintain the pointer directionality in-
variants, this in turn requires that the message operands ofall send
operations are wrapped with a copy-on-demand operation, which
verifies that the message resides in the shared area (as notedabove,
this can be anO(1) operation), and otherwise copies the locally
allocated parts to the shared heap. However, if the message anal-

ysis can determine that a message operandmustalready be on the
shared heap, the test can be statically eliminated.

Note that the copying semantics of message passing in ERLANG

and the absence of destructive updates allows the message analysis
to safely both underapproximate and overapproximate use ofdata
as messages. With underapproximation, the data will be copied to
the message area in the send operation and the behavior of thehy-
brid architecture will be similar to the process-centric architecture,
except that data which is repeatedly passed from one processto
another will only be copied once. On the other hand, if the analy-
sis overapproximates too much, most of the data will be allocated
on the shared heap, and we will not benefit from the process-local
heaps; i.e., data will need to be reclaimed by global garbagecollec-
tion.

3.3 Allocation characteristics of Erlang
programs

In the eyes of the memory manager, the Erlang heap only con-
tains two kinds of objects: cons cells and boxed objects. Boxed
objects are tuples, arbitrary precision integers, floats, binaries, and
function closures. Boxed objects contain a header word which di-
rectly or indirectly includes information about the object’s size. In
contrast, there is no header word for cons cells. Regarding heap
allocation, we have run a wide range of Erlang programs and com-
mercial applications we have access to, and have discoveredthat
nearly three quarters (73%) of all heap-allocated objects are cons
cells (of size two words). Out of the remaining ones, less than 1% is
larger than eight words. Although these numbers have to be taken
with a grain of salt, since each application has its own memory
allocation characteristics, it is quite safe to conclude that, in con-
trast to e.g. a Java implementation, there is a significant number of
heap-allocated objects which are small in size and do not contain
a header word. Adding an extra word to every object significantly
penalizes execution and space consumption and is thereforenot an
option we consider. How this constraint influences the design of
the incremental garbage collector is discussed in Section 5.

4. GARBAGE COLLECTION IN THE
HYBRID ARCHITECTURE

We discuss the garbage collection schemes that are employed
based on the characteristics and intended use of each memoryarea.

4.1 Garbage collection of process-local heaps
As mentioned, when a process dies, its allocated memory area

can be reclaimed directly without the need for garbage collection.
This property in turn encourages the use of processes as a form
of programmer-controlled regions: a computation that requires a
lot of auxiliary space can be performed in a separate processthat
sends its result as a message to its consumer and then dies. In
fact, because the default runtime system architecture has for many
years been the process-centric one, a lot of Erlang applications have
been written and fine-tuned with this memory management model
in mind.1

When a process does run out of its allocated memory, the run-
time system garbage collects its heap using a generational Cheney-
style semi-space stop-and-copy collector [7]. (Data has tosur-
vive two garbage collections to be promoted to the old generation.)
Also when running native code instead of bytecode, the collector
is guided bystack descriptors(also known asstack maps) and the

1In this respect, process-local heaps are very much likearenasused by the Apache
Web server [24] to deallocate all the memory allocated by a Web script once the script
has terminated.

root set is further reduced by employinggenerational stack scan-
ning [9], an optimization which reduces the cost of scanning the
root set by reusing information from previous GC scans. Although
this collector cannot give any real-time guarantees, pausetimes
when collecting process-local heaps are typically not a problem in
practice. This is because most collections are minor and therefore
quite fast, and as explained above many Erlang applicationshave
been programmed to use processes for specific, fine-grained tasks
that require a relatively small amount of memory. Moreover,be-
cause process-local heaps can be collected independently,in a mul-
tithreaded implementation, pauses due to collecting process-local
heaps do not jeopardize the responsiveness of the entire system
as the mutator can service other processes which are in the ready
queue.

4.2 Garbage collection of binaries
The shared area for (large) binaries is collected usingreference

counting [11]. The count is stored in the header of binaries and
increased whenever a new reference to a binary is created (when
a binary is e.g. copied to the message area in the send operation).
Each process maintains aremembered listof such pointers to bina-
ries stored in the binary area. When a process dies, the reference
counts of binaries in this remembered list are decreased. A similar
action happens for references which are removed from the remem-
bered list as part of garbage collection. Since cycles in binaries are
not possible, cycle collection is not needed and garbage collection
of binaries is effectively real-time.

4.3 Garbage collection of the message area
Since the message area is shared between processes, its garbage

collection requires global synchronization. The root set is typically
large since it consists of both the stacks and the process-local heaps
of all processes in the system. As a result, pause times for collecting
the message area can be quite high.

This situation can be ameliorated as follows:

• By splitting the message area into generations and perform-
ing generational collection on this area. In fact, one can em-
ploy a non-movingcollector (such asmark-and-sweep) for
the old generation to avoid the cost of repeatedly having to
copy long-lived objects. (We still prefer to manage the young
generation by a copying collector, because allocation is faster
in compacted spaces.)

• By performing an optimization, calledgenerational process
scanning, which is the natural extension of generational root
scanning from the sequential to the concurrent setting. More
specifically, similarly to how generational stack scanningtries
to reduce the root set which has to be considered during a
process-local GC to only the “new” part of the stack, gener-
ational process scanning tries to reduce the number of pro-
cesses whose memory areas are considered part of the root
set. In implementation terms, the runtime system maintains
information about which processes have been active (or re-
ceived a message) since the last garbage collection and con-
siders only those processes as part of the root set during the
frequent minor collections.

All these techniques are used in the hybrid architecture andare
quite effective. However, they can of course not provide anyreal-
time guarantees—not even soft real-time ones—and cannot prevent
GC of the message area becoming a bottleneck in highly concur-
rent applications. For the message area, we need a GC method that
is guaranteed to result in low pause times.

Nursery Allocated
space

Free space

Free−list

FwdFrom−space

Nlimit

Black−map

Generation
Old

Generation
Young

limit

(collected by an incremental mark−and−sweep collector)

(collected by an incremental copying collector)

allocation

Ntop

Figure 2: Organization of the message area.

Note that reference counting isnot the most appropriate such
method. The main reason is that one cannot wait until a process
dies to decrease reference counts of messages that a processhas
sent to or received from other processes; consider for example the
case of a Web server servicing requests. Furthermore reference
counting typically imposes a non-negligible overhead. A different
real-time or incremental GC is called for. We describe the one we
designed and chose to implement in the next section.

5. INCREMENTAL COLLECTION IN THE
SHARED MEMORY AREA

Organization of the message area.Figure 2 shows the or-
ganization of the message area when performing incrementalGC
of the young generation.

• The old generation, which is collected by a mark-and-sweep
collector, consists ofn pages (each page being32Kwords in
size). Allocation uses first-fit in the free-list. If there isnot a
large enough free area in this list, a garbage collection of the
old generation is triggered. If, after a non-moving collection
cycle, there is less than 25% free in the old generation, we
allocate a new page in order to reduce the risk of triggering
another collection soon.

• The young generation consists of two equal-sized parts, the
nurseryand thefrom-space. The size of each part,Σ, is con-
stant and in our implementation we have chosenΣ = 100K
words. The nursery is used by the mutator as the alloca-
tion area during a collection cycle. The from-space is used
in the incremental copying collection; theto-spaceis the old
generation.

• We also use an area (currently an array of sizeΣ) of forward-
ing pointers(denoted as Fwd in Figure 2). The reason is that
the mutator does not expect to find forwarding pointers in
the place of objects. Since the mutator can access objects in
the from-space during a collection cycle, forwarding pointers
cannot be stored in this area. This would require either mak-
ing the mutator perform a test on each heap pointer derefer-
encing and paying the corresponding cost, or the systematic
use ofindirection (as in [5]) and employing aread barrier
mechanism to maintain the to-space invariant (as e.g. in [3]),
which also has a non-trivial associated cost.

In our implementation, the size of the area for the forwarding
pointers isconstant. It could be further reduced if a different

(resizeable) data structure is used; however, we prefer the
simplicity of implementation and constant access time that
an array provides.

• Finally, we also use a bit array (theblack-map) and a pointer
into the nursery (theallocation limit), whose purposes and
uses we describe below.

Terminology.We use the termcollection phaseto refer to a con-
tiguous period of incremental garbage collection, and the termcol-
lection cycleto refer to a complete collection of the young gener-
ation. After a collection cycle has finished, all live data has been
rescued from the nursery and moved to the old generation. A col-
lection cycle may include anon-moving collection cycle, since it is
the garbage collector of the young generation that allocates in the
old generation and is thus the one to trigger its collection.

5.1 The incremental collection algorithm
A new collection cycle begins with the from-space and the nurs-

ery switching roles and with all forwarding pointers being reset.
All processes are then marked as active (i.e., are placed in the

active queue), the first process from this queue is picked up and
a snapshotof its root set is taken. (The process does not need
to be suspended to have its snapshot taken.) When all roots for
this process have been rescued, the process is removed from the
queue. During a collection cycle, inactive processes may become
active againonly by receiving a message from another active pro-
cess. This effectively acts as awrite barrier, albeit one with an
extremely low cost; namely, one extra test for each entire send op-
eration. (Note that if a sender process is not active, then either the
message has been allocated in the message area after the collection
has started, and thereby placed in the nursery, or the message has
already been copied to the old generation.) The collection cycle
will scan the root set as long as there are active processes that con-
tain “new” live objects (i.e., objects in the from-space notalready
copied to the to-space). During a collection cycle, the collector
might of course yield to the mutator as described below.

When a live object is found, and this object has not yet been
forwarded, it is copied to the old generation and added to a stack
of gray objects. A forwarding pointer for this object is placed in
the forwarding pointer array. If the object has been previously for-
warded, we update its reference in the root set to point to thenew
location for the object. When the active queue is empty, the col-
lection cycle continues to process all the gray objects, in order to
rescue their children. This in turn possibly puts more objects on the
gray stack.

If during collection of the young generation, the old generation
overflows, its non-moving incremental garbage collector istrig-
gered. This collector uses its own tricolor scheme [18] imple-
mented as follows. We use a stack of references to keep track of
gray objects. We also use a bit array (theblack-map) to mark ob-
jects as black (i.e., fully processed). The black-map is needed since
there is no room for any mark-bits in the actual objects.

At the end of the collection cycle we also have to look through
the objects in the nursery to update references to data whichhas
been moved from the from-space by the collection (or possibly
copy these objects). This is because the mutator can create ref-
erences from objects in the nursery to objects in the from-space
during a collection cycle.

5.1.1 Interplay between the mutator and the collector
In incremental tracing garbage collectors, the amount of work

to be done in one collection cycle depends on the amount of live
data when asnapshotof the root set is taken. Since we can not

know this quantity, we have to devise a mechanism that allowsus to
control how much allocation the mutator is allowed to do between
two collection phases. (Relying on user-annotations to specify such
a quantity is neither safe nor a “user-friendly” option in the typical
multi-thousand line application domain of ERLANG.)

As with all incremental collectors, a crucial issue is to decide
how and when the switch between the mutator and the collector
will occur. We use anallocation limit to interrupt the mutator (cf.
Figure 2). When the mutator reaches this limit the collectoris in-
voked. This is a cheap way to control the interleaving and further-
more imposes no additional overhead on the mutator. This is be-
cause, even in a non-incremental environment, the mutator checks
against a limit anyway (the end of the nursery,Nlimit). The allo-
cation limit is updated in the end of each collection phase based
on a calculated estimate as described below. To influence theinter-
action between the mutator and the collector, the user can choose
between awork-basedand atime-basedapproach, which update
the allocation limit in different ways.

5.1.2 The work-based collector
The underlying idea is simple. In order for the mutator to allo-

catewM words of heap, the collector must reclaimw words of live
data, wherewM ≤ w. In our implementation, the value ofw is
user-specified. (However, regardless of the user setting, we ensure
that wM ≤ w in all collection phases.) The choice ofw natu-
rally affects the pause times of the collector; see Section 6.2. After
each collection phase the allocation limit is updated toNtop + w,
whereNtop denotes the top of the nursery (i.e., its first free word;
cf. Fig. 2). Note that this is exact, rather than an estimate as in the
case of the time-based collector below.

Since the area we collect, the from-space, has the same size as
the nursery we can guarantee that the collection cycle ends before
the nursery overflows and the mutator cannot allocate further. In
fact, since this is a young generation and most of its data tends to
die young, the collection cycle will most often be able to collect the
from-space before significant allocation takes place in thenursery.

5.1.3 The time-based collector
In the time-based collector, thecollector time quantum, denoted

t, determines the time interval of each collection phase. After this
quantum expires, the collector is interrupted and the mutator is re-
sumed. In our implementation,t is specified (inµsecs) by the user
based on the demands of the application.2

To dynamically adjust the allocation limit, we keep track ofthe
amount of work done during a collection phase. We denote thisby
∆GC and since this is a tracing collector it is expressed in number
of live words reclaimed, i.e.,

∆GC = reclaimed after GC − reclaimed before GC

Assuming the worst case scenario (that the entire from-space of size
Σ is live), at the end of a collection phase we (conservatively) esti-
mate how much of the total collection we managed to do. Then we,
again conservatively, estimate how many more collection phases it
will take to complete the collection cycle, provided we are able to
continue collecting at the same rate.

GCphases =
Σ − reclaimed after GC

∆GC

2When needed, the collector is allowed some “free” extension, in order to update the
reference counts of binaries and possibly clean up after itself. This deadline extension
is typically very small; cf. Section 6.2.

We now get:

wM =
f

GCphases

wheref is the amount of free memory in the nursery. Thus, we can
now update the allocation limit toNtop + wM .

5.2 Some optimizations
In the beginning of the collection cycle, all processes in the sys-

tem are put in the active queue, in a more or less random order.3

However, each time an active process receives a message, it is
moved last in the queue (as if it were reborn). This way, we keep
the busiest processes last in the queue and scan them as late as
possible. The rationale for wanting to postpone their processing is
three-fold:

1. avoid repeated re-activation of message-exchanging processes;

2. allow processes to execute long enough for their data to be-
come garbage;

3. give processes a chance to die before we take a snapshot of
their root set; in this way, we might actually avoid consider-
ing these processes.

Another way of postponing processing members of the active queue
is to process the stack of gray objects after we are finished with each
process (instead of processing all processes in the active queue first
and then processing the complete gray stack).

In minor collections of the shared message area, we remember
the top of heap for each process and only consider as part of their
root set data that has been created since the process was taken off
the active-queue.

Finally, a very important optimization is to have process-local
garbage collections record pointers into the message area in a re-
membered set. This way we avoid scanning the old generation of
their local heaps.

5.3 Characteristics of the collector
First of all note that the collector does not require any header

word in the objects in order to perform incremental copying col-
lection in the young generation. Therefore, it imposes no overhead
to allocation. The collector instead uses an extra space, namely the
forwarding area, whose size is bounded byΣ. Recall thatΣ does
not increase during GC and is not affected by the allocation charac-
teristics of the program which is being executed. In the old genera-
tion, the only extra overhead is one bit per word for the black-map
and a dynamically resizeable stack for the gray objects. Note that
for the frequent collections of the young generation, the size of this
gray stack is bounded byΣ/2. The space overhead of the incre-
mental collector is quite low.

Without incrementality, the collector behaves as asnapshot-at-
the-beginningalgorithm [25, Section 3.3.1]. As explained above, in
the incremental collector we postpone taking the snapshot of pro-
cesses in the active queue as long as possible. By incrementally
taking partial snapshots of the root set, i.e., only one process at a
time, we allow the remaining processes to create more garbage as
we collect the process at the head of the queue. This means that we
will most likely collect more garbage than a pure snapshot-at-the-
beginning collector.

An unfortunate side-effect of the root set minimization effort de-
scribed above is that since we do not actually scan the old gen-
eration of process-local heaps during root-scanning, but only the
set of references to the message area recorded during process-local
3The queue order is actually determined by the age of the processes; oldest first.

Benchmark Processes Messages
worker 403 1,650
msort q 16,383 49,193
adhoc 137 246,021
yaws 420 2,275,467
mnesia 1,109 2,892,855

Table 1: Concurrency characteristics of benchmarks.

garbage collection, some of the rescued objects might actually be
already dead at the start of the collection. An object may therefore
be kept in the message area for a number of collection cycles until a
major process-local garbage collection updates the remembered set
of objects (or the process dies) and triggers the next collection cy-
cle of the message area to finally remove the object. This however
is an inherent drawback of all generational schemes.

6. MEASUREMENTS

The benchmarks.For the performance evaluation we used two
synthetic benchmarks and three Erlang applications with a high de-
gree of concurrency from different domains:

worker Spawns a number of worker processes and waits for them
to return their results. Each worker builds a data structurein
several steps, generating a large amount of local, temporary
data. The final data structure is sent to the parent process.
This is an allocation-intensive program whose adversarialna-
ture is a challenge for the incremental garbage collector.

msort q A distributed implementation of merge sort. Each pro-
cess receives a list, implicitly splits it into two sublistsby in-
dexing into the original list, and spawns two new processes
for sorting these lists (which are passed to the processes as
messages). Although this program takes a very small time
to complete, we use it as a benchmark because it spawns a
large number of simultaneously live processes (cf. Table 1)
and thus its root set is quite large.

adhoc A framework for genetic algorithms. It solves deceptive
problems while simulating a population of chromosomes us-
ing processes and applies crossovers and mutations. The
AdHOC program4 consists of about 8,000 lines of Erlang
code.

yaws A high-performance multithreaded HTTP Web server where
each client is handled by a separate Erlang process. Yaws5

contains about 4,000 lines of code (excluding calls to func-
tions in Erlang/OTP libraries such as HTTP, SSL, etc). We
usedhttperf [19] to generate requests for Yaws.

mnesia The standard TPC-B database benchmark for the Mnesia
distributed database system. Mnesia consists of about 22,000
lines of Erlang code. The benchmark tries to complete as
many transactions as possible in a given time quantum.

Some more information on these benchmarks (number of processes
spawned and messages sent between them) is shown in Table 1.

The performance evaluation was conducted on a dual proces-
sor Intel Xeon 2.4 GHz machine with 1 GB of RAM and 512 KB
of cache per processor, running Linux. The kernel has been en-
hanced with theperfctr driver [21], which provides access to
4ADHOC: Adaptation of Hyper Objects for Classification.
5YAWS : Yet Another Web Server; seeyaws.hyber.org.

Local GCs Message area GCs
Benchmark w = 2 w = 100 w = 1000 t = 1000
worker 6.7 K 2.5 M 98.7 K 10 K —
msort q 357 79,190 1,716 174 222
adhoc 1.1 M 54,934 3,737 390 —
yaws 2.1 M 32,204 1,393 290 1,551
mnesia 892 K 12,581 671 219 775

Table 2: Number of GCs when using the incremental collectors.

high-resolution performance monitoring counters on Linuxand al-
lows us to measure GC pause times inµs.

6.1 Runtime and collector performance
To provide a base line for our measurements, Table 3 shows time

spent in the mutator, garbage collection times, and GC pausetimes
for all benchmarks when using the non-incremental collector for
the message area. Observe that the first three columns of the table
are inms while the remaining ones inµs. Table 4 confirms that the
time spent in the mutator and in performing garbage collection of
process-local heaps is not affected by using the incremental collec-
tor for the message area. Depending on the configuration, theover-
head for the incremental collector compared to the non-incremental
collector ranges from a few percent to 2.5–3 times for most pro-
grams. The overhead is higher (5.6 times) forworker which is a
program that was constructed to spend a significant part of its time
allocating in (and garbage collecting) the message area.

Considering total execution time, the performance of applica-
tions is practically unaffected by the extra overhead of performing
incremental GC in the message area. Even for the extreme case
of worker, which performs 2.5 million incremental garbage col-
lections of the message area whenw = 2 (cf. Table 2), its total
execution time is 1.7 times that with non-incremental GC.

6.2 Garbage collection pause times
Table 5 shows pause times for the incremental work-based col-

lector using three different choices ofw, collecting 2, 100, and
1000 words, respectively. As expected, for most benchmarks, the
incremental garbage collector significantly lowers GC pause times,
both their maximum and mean values (the columns titled Geo.mean
show the geometric mean of all pause times) compared with the
non-incremental collector (cf. the last three columns of Table 3).
The maximum pause times ofyaws (for w = 100 and1000) are
the only slight exception to this rule, and the only explanation we
can offer for this behavior is that perhaps message live datais hard
to come by in this benchmark. The mean GC pause time values, in
particular the geometric means, show a more consistent behavior.
In fact, one can see a correlation between the value ofw and the
order of pause times inµs.

The distribution of pause times (inµs) for the benchmarks using
the work-based incremental collector is shown in Figure 3.6 The
majority of collection phases are very fast, and only a very small
percentage of the collections might be a problem for a real-time ap-
plication. On the other hand, a work-based collector whose notion
of work is defined in terms of “words reclaimed” naturally cannot
guarantee an upper limit on pause times, as data to scavenge might
be quite hard to come by.

A time-based incremental collector can in principle avoid this
problem; see [3]. Care of course must be taken to detect the case
when the mutator is allocating faster than the collector canreclaim,
and take an appropriate action. Figure 4 (cf. also Table 2) shows

6
mnesia is not included in Fig. 3 as its pause times do not show anything interesting.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

< 1 1 -
70337

(a)worker (w = 2)

0%

10%

20%

30%

40%

50%

60%

2 4 6 8 10 12 14 16 18 20 - 40

41 - 84 K

(b) worker (w = 100)

0%

10%

20%

30%

40%

50%

20 40 60 80 100
121 - 200

201 - 90 K

(c) worker (w = 1000)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

< 1 1 2 -
3089

(d) msort q (w = 2)

0%

3%

6%

9%

12%

15%

18%

5 11 16 21 26 31 36 41 46 51 56 60 - 100

101 - 300

301 - 3142

(e)msort q (w = 100)

0%

5%

10%

15%

20%

25%

30%

35%

40 80 120
160

200
240

280
320

360
401 - 500

501 - 600

601 - 4500

(f) msort q (w = 1000)

0%

5%

10%

15%

20%

25%

30%

35%

40%

< 1 5 10 15 20 25 30 -
1029

(g) adhoc (w = 2)

0%

3%

6%

9%

12%

15%

18%

10 20 30 40 50 60 70 80 90 100
110

120
130

140
150 - 200

200 - 700

700 - 1051

(h) adhoc (w = 100)

0%

5%

10%

15%

20%

25%

30%

35%

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300

(i) adhoc (w = 1000)

0%

10%

20%

30%

40%

50%

60%

70%

80%

< 1 4 6 8 10 12 12 14 16 18 20 - 500

501 - 1202

(j) yaws (w = 2)

0%

10%

20%

30%

40%

50%

20 40 60 80 100
120

140
150 - 550

600
700

800
900

1000
1100

1200
1250 - 1324

(k) yaws (w = 100)

0%

5%

10%

15%

20%

25%

30%

35%

200
400

600
800

1000
1200

1400
1600

(l) yaws (w = 1000)

Figure 3: Distribution of pause times (inµs) for the work-based incremental collector.

Total Time (ms) Local GC Pause Times (µs) Message area GC Pause Times (µs)
Benchmark Mutator Local GC MA GC Max Mean Geo.Mean Max Mean Geo.Mean
worker 3,591 2,756 1,146 7,673 395 68 178,916 89,811 77,634
msort q 174 3 29 577 9 4 16,263 9,807 11,646
adhoc 61,578 7,848 27 88 6 7 1,650 1,242 1,174
yaws 240,985 11,359 153 370 8 7 1,088 649 636
mnesia 53,276 4,487 88 4,722 4 5 1,413 485 458

Table 3: Mutator and total GC times (in ms) and pause times (inµs) using the non-incremental collector.

Message area (MA) GC
Benchmark Mutator Local GC w = 2 w = 100 w = 1000
worker 3,560 2,798 6,445 6,296 6,341
msort q 164 3 54 34 33
adhoc 61,045 8,194 244 203 78
yaws 237,629 11,728 373 374 242
mnesia 52,906 4,439 182 164 156

Table 4: Mutator times and total GC times (in ms) using the incremental (work-based) collector.

Local GC Pause Times (µs) Message area GC Pause Times (µs)
w = 2 w = 100 w = 1000

Benchmark Max Mean Geo.mean Max Mean Geo.mean Max Mean Geo.mean Max Mean Geo.mean
worker 6,891 390 68 70,337 2 0 83,450 63 7 96,450 635 72
msort q 611 8 4 3,089 0 0 3,142 19 11 4,511 204 110
adhoc 125 6 7 1,029 3 2 1,051 53 46 1,233 202 158
yaws 266 8 8 1,202 9 1 1,324 268 36 1,586 836 853
mnesia 4,751 4 5 1,014 14 1 1,027 244 43 1,212 714 787

Table 5: Pause times (inµs) for the incremental (work-based) collector.

counts of GC pauses when running three of the benchmarks pro-
grams using the time-based incremental garbage collector with a t
value of1ms (1000µs). As mentioned in Footnote 2, when needed,
the collector is allowed some small deadline extension, in order to
possibly clean up after itself. This explains why there is a small
number of values above1000µs. Note that in Figures 4(c) and 4(b)
the number of GCs (the Y axis) is in logarithmic scale.

6.3 Mutator utilization
In any time window, the notion ofmutator utilizationis defined

as the fraction of time that the mutator executes; see [8].
Figure 5 shows mutator utilization for the programs we used as

benchmarks when using the work-based incremental collector for
different values ofw. The two synthetic benchmarks exhibit in-
teresting patterns of utilization. As expected, theworker bench-
mark suffers from poor mutator utilization since it is designed to be
allocation-demanding and be a serious challenge for the incremen-
tal collector. (The first interval of high utilization is thetime before
the first collection is triggered and the remaining two are periods
after a collection cycle has finished and there is free space left in
the nursery that the mutator can use for its allocation needs.) Sim-
ilarly, the mutator utilization ofmsort q drops significantly when
live data in the message area is hard to come by. On the other hand,
the mutator utilization of the three “real” programs is good—even
for w = 2, alhough foryaws andmnesia this is apparent only
with the time axis streched out; Figure 6 shows the same data as
Figure 5(k) but only for a portion of the total time needed to run the
benchmark.

Mutator utilization for the time-based incremental collector is
shown in Figure 7. For bothyaws (mainly) andmnesia the utiliza-
tion using the time-based collector is slightly worse than that when

0,0

0,2

0,4

0,6

0,8

1,0

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Time (s)

M
ut

at
or

 C
P

U
 U

til
iz

at
io

n

Figure 6: Mutator utilization of yaws (w = 100) for the work-
based incremental collector shown in detail.

using the work-based one. The choice of an otherwise small, but
compared with the total execution time relatively high in this case,
t value (1ms) jeopardizes the mutator utilization ofmsort q.

7. RELATED WORK
Runtime system organization.By now, several works have
suggested detecting thread-local objects via staticescape analysis,
mainly of Java programs; notable among them are [4, 10, 22]. The
goal has been to identify, conservatively and at compile time, the
objects that are only going to be accessed by their creating thread
and allocate them on the thread-local stack, thereby avoiding syn-
chronization for these objects. In fact, the analysis of [22] is ex-
ploited in [23] by suggesting the use of thread-local heap chunks
for non-escaping objects and a shared (portion of the) heap for all
other data. Thread-local heaps for Java have also been advocated
in [13], this time guided by information gathered by a profiler rather
than by static analysis.

0

10

20

30

40

50

60

343 503 763 1000 1001 1002 1003 1012

Time (µs)

C
o

u
n

t

(a)msort q (t = 1000µs)

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

Time (µs)
C

o
u

n
t

103

(b) yaws (t = 1000µs)

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

Time (µs)

C
o

u
n

t

122

(c) mnesia (t = 1000µs)

Figure 4: Counts of pause times (inµs) for the time-based incremental collector.

Note that, mainly because of the differences in the semantics of
Java and ERLANG, all the above works attack the problem of mem-
ory allocation in the opposite direction than we do. Rather than
allocating in thread-local heaps by default and using analysis to de-
termine which objects are possibly shared, they try to determine
objects that willonly be accessed by their creating thread and allo-
cate them in a thread-local memory area. In contrast, the message
analysis that guides our allocator, identifies data that will probably
be used in a message, enabling a speculative optimization that allo-
cates data in the shared message area, thereby eliminating the need
for copying at send time and making it possible to remove run-time
checks altogether. The closest relative of our work is the memory
architecture described in [12] which uses thread-local allocation for
immutable objects in Caml programs.

Memory management of Erlang programs.The soft real-
time concerns of the ERLANG language call for bounded-time GC
techniques. One such technique, based on a mark-and-sweep al-
gorithm taking advantage of the fact that the heap in an ERLANG

system isunidirectional(i.e., is arranged so that the pointers point
in only one direction), has been described in [1], but imposes a sig-
nificant overhead and was never fully implemented. Similarly, [14]
describes the design of a near-real-time compacting collector in the
context of the Gambit-C Scheme compiler. This garbage collector
was intended to be used in the Etos (Erlang to Scheme) system but
never made it to an Etos distribution.

Incremental and real-time GC techniques.In the context
of other (strict, concurrent) functional language implementations,
the challenge has been to achieve low GC latency without paying
the full price in performance that a guaranteed real-time garbage
collector usually requires. Notable among them is the quasireal-
time collector of Concurrent Caml Light [12] which combinesa
fast, asynchronous copying collector for the thread-specific young
generations with a non-disruptive concurrent mark-and-sweep col-
lector for the old generation (which is shared among all threads).

Many concurrent (real-time) garbage collectors for functional
languages have also been proposed, either based on incremental
copying [5, 15], or onreplication [20] (see also [8] for a multi-
processor version of one such collector). The main difference be-
tween them is that incremental collectors based on copying require
a read barrier, while collectors based on replication do not. Instead,
they capitalize on the copying semantics of (pure) functional pro-
grams, and incrementally replicate all accessible objectsusing a
mutation log to bring the replicas up-to-date with changes made by
the mutator.

An excellent discussion and analysis of the trade-offs between
work-based and time-based incremental collectors appearsin [3].
Our work, although done independently and in a very different con-
text than that of [3], is quite heavily influenced by it, presentation-
wise. Given the different semantics (copying vs. sharing) of con-
currency in ERLANG and Java, and the different compiler and run-
time system implementation technologies involved in Erlang/OTP
and in Jikes RVM, it is very difficult to do a fair comparison be-
tween the Metronome (the collector of [3]) and our incremental
collector. As a rather philosophical difference, we do not ask the
user to guide the incremental collector by specifying the maximum
amount of simultaneously live data or the peak allocation rate over
the time interval of a garbage collection. More importantly, it ap-
pears that our system is able to achieve significantly lower pause
times and better mutator utilization than the Metronome. Webe-
lieve this can mostly be attributed to the memory allocationstrategy
of the hybrid runtime system architecture which is local-by-default.
On the other hand, the utilization of our collector is not as consis-
tent as that of [3] for adversarial, synthetic programs,7 but then
again we are interleaving the collector and the mutator in a much
finer-grained manner (e.g., collecting just 2 words) or we are forc-
ing our collector to run in a considerably smaller collectorquantum
(1ms vs.22.2ms which [3] uses).

8. ACKNOWLEDGMENTS
This research has been supported in part by a grant from the

Swedish Research Council (Vetenskapsrådet) and by the ASTEC
(Advanced Software Technology) competence center with match-
ing funds by Ericsson and T-Mobile.

9. REFERENCES
[1] J. Armstrong and R. Virding. One pass real-time generational

mark-sweep garbage collection. In H. G. Baker, editor,
Proceedings of IWMM’95: International Workshop on
Memory Management, number 986 in LNCS, pages
313–322. Springer-Verlag, Sept. 1995.

[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in Erlang. Prentice Hall Europe,
Herfordshire, Great Britain, second edition, 1996.

[3] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In
Conference Record of POPL 2003: The 30th

7Of course, this very much depends on the choice of these programs!

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8 9 10

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(a)worker (w = 2)

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8 9

Time (s)
M

u
ta

to
r

C
P

U
 U

ti
li
z
a

ti
o

n
(b) worker (w = 100)

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8 9

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(c) worker (w = 1000)

0,0

0,2

0,4

0,6

0,8

1,0

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(d) msort q (w = 2)

0,0

0,2

0,4

0,6

0,8

1,0

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(e)msort q (w = 100)

0,0

0,2

0,4

0,6

0,8

1,0

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(f) msort q (w = 1000)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50 55

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(g) adhoc (w = 2)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50 55

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(h) adhoc (w = 100)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50 55

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(i) adhoc (w = 1000)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(j) yaws (w = 2)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(k) yaws (w = 100)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(l) yaws (w = 1000)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(m) mnesia (w = 2)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(n) mnesia (w = 100)

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(o) mnesia (w = 1000)

Figure 5: Mutator utilization for the work-based increment al collector.

0,0

0,2

0,4

0,6

0,8

1,0

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(a)msort q

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(b) yaws

0,0

0,2

0,4

0,6

0,8

1,0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

M
u

ta
to

r
C

P
U

 U
ti
li
z
a

ti
o

n

(c) mnesia

Figure 7: Mutator utilization for the time-based (t = 1000µs) incremental collector.

SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 285–298, New York, N.Y.,
Jan. 2003. ACM Press.

[4] B. Blanchet. Escape analysis for JavaTM : Theory and
practice.ACM Trans. Prog. Lang. Syst., 25(6):713–775, Nov.
2003.

[5] R. A. Brooks. Trading data space for reduced time and code
space in real-time garbage collection on stock hardware. In
G. L. Steele, editor,Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pages
256–262, New York, N.Y., 1984. ACM Press.

[6] R. Carlsson, K. Sagonas, and J. Wilhelmsson. Message
analysis for concurrent languages. In R. Cousot, editor,Static
Analysis: Proceedings of the 10th International Symposium,
number 2694 in LNCS, pages 73–90, Berlin, Germany, June
2003. Springer.

[7] C. J. Cheney. A nonrecursive list compacting algorithm.
Communications of the ACM, 13(11):677–678, Nov. 1970.

[8] P. Cheng and G. E. Blelloch. A parallel, real-time garbage
collector. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 125–136, New York, N.Y., June 2001. ACM Press.

[9] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. InProceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’98, pages 162–173, New
York, N.Y., 1998. ACM Press.

[10] J.-D. Choi, M. Gupta, M. Serrano, V. C. Shreedhar, and S.P.
Midkiff. Stack allocation and synchronization optimizations
for Java using escape analysis.ACM Trans. Prog. Lang.
Syst., 25(6):876–910, Nov. 2003.

[11] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, Dec. 1960.

[12] D. Doligez and X. Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ML. In
Conference Record of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
113–123, New York, N.Y., Jan. 1993. ACM Press.

[13] T. Domani, G. Goldshtein, E. Kolodner, E. Lewis, E. Petrank,
and D. Sheinwald. Thread-local heaps for Java. In D. Detlefs,
editor,Proceedings of ISMM’2002: ACM SIGPLAN
International Symposium on Memory Management, pages
76–87, New York, N.Y., June 2002. ACM Press.

[14] M. Feeley and M. Larose. A compacting incremental
collector and its performance in a production quality
compiler. InProceedings of ISMM’98: ACM SIGPLAN
International Symposium on Memory Management, pages

1–9, New York, N.Y., Oct. 1998. ACM Press.
[15] L. Huelsbergen and J. R. Larus. A concurrent copying

garbage collector for languages that distinguish (im)mutable
data. InProceedings of the 4th ACM Symposium on
Principles and Practice of Parallel Programming, pages
73–82, New York, N.Y., May 1993. ACM Press.

[16] E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A High
Performance Erlang system. InProceedings of the ACM
SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 32–43, New York, NY,
Sept. 2000. ACM Press.

[17] E. Johansson, K. Sagonas, and J. Wilhelmsson. Heap
architectures for concurrent languages using message
passing. In D. Detlefs, editor,Proceedings of ISMM’2002:
ACM SIGPLAN International Symposium on Memory
Management, pages 88–99, New York, N.Y., June 2002.
ACM Press.

[18] R. E. Jones and R. Lins.Garbage Collection: Algorithms for
automatic memory management. John Wiley & Sons, 1996.

[19] D. Mosberger and T. Jin. httperf—a tool for measuring web
server performance.SIGMETRICS Perform. Eval. Rev.,
26(3):31–37, Dec. 1998.

[20] S. Nettles and J. O’Toole. Real-time replication garbage
collection. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 217–226, New York, N.Y, June 1993. ACM Press.

[21] M. Pettersson. Linux x86 performance-monitoring counters
driver.http://user.it.uu.se/~mikpe/linux/perfctr/.

[22] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, pages 208–218, New
York, N.Y., June 2000. ACM Press.

[23] B. Steensgaard. Thread-specific heaps for multi-threaded
programs. InProceedings of the ACM SIGPLAN
International Symposium on Memory Management, pages
18–24, New York, N.Y., Oct. 2000. ACM Press.

[24] L. Stein and D. MacEachern.Writing Apache Modules with
Perl and C. O’Reilly & Associates, 1999.

[25] P. R. Wilson. Uniprocessor garbage collection techniques. In
Y. Bekkers and J. Cohen, editors,Proceedings of IWMM’92:
International Workshop on Memory Management, number
637 in LNCS, pages 1–42, Berlin, Germany, Sept. 1992.
Springer-Verlag. See also expanded version as Univ. of Texas
Austin technical report submitted to ACM Computing
Surveys.

