Message Analysis-Guided Allocation and Low-Pause
Incremental Garbage Collection in a Concurrent Language

Konstantinos Sagonas

Dept. of Information Technology
Uppsala University, Sweden

kostis@it.uu.se

ABSTRACT

Jesper Wilhelmsson

Dept. of Information Technology
Uppsala University, Sweden

jesperw@it.uu.se

1. INTRODUCTION

We present a memory management scheme for a concurrent pro- Concurrent, real-time programming languages with autmmat

gramming language where communication occurs using messag
passing with copying semantics. The runtime system is érolind
process-local heaps, which frees the memory manager frdumre
dant synchronization in a multithreaded implementatictha@iows

the memory reclamation of process-local heaps to be a pribrei-
ness and to often take place without garbage collection. allbe
cator is guided by a static analysis which speculativelgcates

memory management present new challenges to programnming la
guage implementors. One of them is how to structure thementi
system of such a language so that it is tailored to the inttnde

of data, so that performance does not degrade for highlywenc
rent (i.e., thousands of processes/threads) applicatomsso that
the implementation scales well in a multithreaded or a rprdti
cessor setting. Another challenge is to achieve the higél lefr

data possibly used as messages in a shared memory area. To réesponsiveness that is required by applications from dasrsich

spect the (soft) real-time requirements of the languagejevelop
a generational, incremental garbage collection schenwréddito
the characteristics of this runtime system. The colleatgpdses
no overhead on the mutator, requires no costly barrier nmésims,
and has a relatively small space overhead. We have impleahent
these schemes in the context of an industrial-strengthemeh-
tation of a concurrent functional language used to devehoget
scale, highly concurrent, embedded applications. Our ureas
ments across a range of applications indicate that the rireme
tal collector substantially reduces pause times, imposgs\@ry
small overhead on the total runtime, and achieves a higredegjr
mutator utilization.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systerps Real-
time and embedded systems; D.3Rtdgramming Language$:
Processors-memory management (garbage collection), run-time
environmentsD.3.2 [Programming Language$: Language Clas-
sifications—applicative (functional) languages, concurrent and dis-
tributed languagesD.3.3 [Programming Language§: Language
Constructs and Featuresencurrent programming structures, dy-
namic storage management

General Terms
Languages, Performance, Measurement, Experimentation
Keywords

Incremental and real-time garbage collection, threadtlbeaps,
concurrent languages, Erlang

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

ISMM’'04, October 24-25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010$5.00.

as embedded control and telecommunication systems.

Taking up the latter challenge becomes tricky when autamati
memory management is performed using garbage collecti@).(G
The naive “stop-the-world” approach, where threads regbain-
terrupt execution of a user’s program in order to perfornbgge
collection, is clearly inappropriate for applications hviteal-time
requirements. It is also problematic on principle: it imnces
a point of global synchronization between otherwise indepat
threads—and possibly also tasks—and provides no guasafiee
bounds on the length of the individual pauses or for suffigxeo-
gress by the application; see [8] for a discussion of theeisshat
are involved.

Despite the significant progress in developing automatimaorg
reclamation techniques with real-time characteristie® ®.9., [3,

5, 8, 18, 20]), each technique relies on a number of (ofteridityp
assumptions about the architecture of the runtime systatmrtight
not be the most appropriate ones to follow in a different erit
Furthermore, languages have their own characteristicshwhflu-
ence the trade-offs associated with each technique. Fonpga
many collectors for object-oriented languages such asaksiame
that allocating an extra header word for each object doep&ot
nalize execution times by much and does not impose a significa
space overhead. Similarly, the semantics of a language avay f
the use of a read rather than a write barrier, or may allow forem
liberal forms of incremental collection (e.qg., based oricagion of
objects). Finally, it is clear that the type of GC which is dayed
interacts with and is influenced by the allocation which isdislt

is very difficult to come up with techniques that are welltsdifor

all runtime environments.

Our contributions.Our first contribution is in the area of run-
time systems architectures for highly concurrent langsageere
communication occurs using message-passing. We presedéth
tails of a runtime system whose memory manager splits tle all
cated memory into areas based on the intended use of data. Its
memory allocator is guided by a static analysis, which sjagively
allocates data possibly used as messages in a shared mewary a
Based on the characteristics of each memory area, we didtaiss
various types of garbage collection methods which are eyaglo

Our second, and main contribution is to develop a generation
incremental garbage collection scheme for this runtimeesysNo-
table characteristics are that the collector imposes niwewatitle
overhead on the mutator, requires no costly barrier meshemi
and has a relatively small space overhead.

Finally, we have implemented this scheme in the context of an
industrial-strength implementation of a concurrent fiorl lan-
guage, and we report on its performance across a range df “rea
world” applications. When using the incremental collectiorough
various optimizations which we discuss in the paper, we hte a
to sustain the overall performance of the system, obtairemely
small pause times, and achieve a high degree of mutataratidn.

2. THE CONTEXT OF OUR WORK

The work reported in this paper is part of an ongoing research
project at Uppsala University in collaboration with the elep-
ment team of the Erlang/OTP system at Ericsson. Prior wosk ha
resulted in the development of the HIPE (High Performandarig)
native code compiler [16], which nowadays is fully inte@in the
Erlang/OTP system, and in investigation of the pros and obat
ternative runtime system architectures for concurrerguages us-
ing message passing (work reported in [17] and briefly restkin
Sect. 2.2). Chief among the current goals of the project@mni
plement static analyses which determine the intended udataf
in highly concurrent languages in order to guide the memboy a
cator, and to improve the responsiveness of the resultistgsyby
incorporating garbage collectors with real-time chanasties and
a high rate of mutator utilization.

To set our context, we briefly review theREANG language and
the runtime system architectures of the Erlang/OTP system.

2.1 Erlang and Erlang/OTP

ERLANG [2] is a strict, dynamically typed functional program-
ming language with support for concurrency, communicatéis-
tribution and fault-tolerance. It has automatic memory ag
ment and supports multiple platforms.REANG was designed to
ease the programming of soft real-time control systems coniyn
developed by the data- and tele-communications industsyiril-
plementation, the Erlang/OTP system, has so far been used qu
successfully both by Ericsson and by other companies arthend
world (e.g., T-Mobile, Nortel Networks) to develop largeysral
hundred thousand lines of code) commercial applications.

ERLANG’s basic data types are atoms, numbers (floats and ar-
bitrary precision integers), and process identifiers; coungl data
types are lists and tuples. A notation for objects (recondthe
ERLANG lingo) is supported, but the underlying implementation of
records is the same as tuples. To allow efficient implemigmtatf
telecommunication protocols,REANG also includes &inary data
type (a vector of byte-sized data) and a notation to perfattem
matching on binaries. There is no destructive assignmewnaihf
ables or data and consequently cyclic references cannotbted.
Because recursion is the only means to express iteratibrcath
optimization is a required feature oREANG implementations.

Processes in BLANG are extremely light-weight (significantly
lighter than OS threads) and their number in typical apfitios
is quite large (in some cases up to 100,000 processes onla sing
node). RLANG'’s concurrency primitives-spawn, “!” (send), and
receive—allow a process to spawn new processes and communi-
cate with other processes through asynchronous messagjagas
with copying semanticsAny data value can be sent as a message
and the recipient may be located on any machine on the network
Each process hasraailbox essentially a message queue, where

each message sent to the process will arrive. Messageiselect
from the mailbox occurs through pattern matching. In sengr-op
ations, the receiver is specified by its process identifegyardless
of where it is located, making distribution all but invigblTo sup-
port robust systems, a process can register to receive aagess
if another one terminates. REANG also provides a mechanism
that allows a process to timeout while waiting for messagesaa
try/catch-style exception mechanism for error handling.

ERLANG is often used in high-availability large-scale embedded
systems (e.g., telephone centers), where down-time isreshjto
be less than five minutes per year. Such systems cannot be take
down, upgraded, and restarted when software patches anadgsgy
arrive, since that would not respect their availabilityurgment.
Consequently, an BLANG system comes with support for upgrad-
ing code while the system is running, a mechanism knowdyas
namic code replacementMoreover, these systems typically also
require a high-level of responsiveness, and the soft heed-ton-
cerns of the language call for fast garbage collection tecias.

The ERLANG language is small, but its implementation comes
with a big set of libraries. With th®pen Telecom PlatforfOTP)
middleware, RLANG is further extended with standard compo-
nents for telecommunication applications (an ASN.1 coetpthe
Mnesia distributed database, servers, state machineggzmon-
itors, tools for load balancing, etc.), standard interfasach as
CORBA and XML, and a variety of communication protocols (g.g
HTTP, FTP, SMTP, etc.).

2.2 The three runtime systems of Erlang/OTP

Until quite recently, the Erlang/OTP runtime system wasebas
on aprocess-centri@rchitecture; i.e., an architecture where each
process allocates and manages its private memory area. dine m
reason why this memory allocation scheme was chosen wai that
was believed it results in lower garbage collection lateNgginting
to investigate the validity of this belief, in [17] we exarathtwo
alternative runtime system architectures for implementiancur-
rency through message passing: one whichoisimunaland all
processes get to share the same heap, dnydbiad scheme where
each process has a private heap for process-local data eut\ah
shared heap is used for data sent as messages and thus shkared b
tween processes. Nowadays, all three architectures duel@ttin
the Erlang/OTP release. We briefly review their charadiesis

Process-centricIn this architecture, interprocess communication
requires copying of messages and thus i©)dn) operation
wheren is the message size. Memory fragmentation tends to
be high. Pros are that the garbage collection times and pause
are expected to be small (as the root set need only consist
of the stack of the process requiring collection), and upon
termination of a process, its allocated memory area can be
reclaimed in constant time (i.e., without garbage coltegti

Communal The biggest advantage is very fag2((l)) interpro-
cess communication, simply consisting of passing a pointer
to the receiving process, reduced memory requirements due
to message sharing, and low fragmentation. Disadvantages
include having to consider the stacksadif processes as part
of the root set (resulting in increased GC latency) and pos-
sibly poor cache performance due to processes’ data being
interleaved on the shared heap. Furthermore, the communal
architecture does not scale well to a multithreaded or multi
processor implementation, since locking would be required
in order to allocate in and collect the shared memory area in
a parallel setting; see [8] for an excellent recent treatroén
the subject of parallel real-time GC.

Hybrid An architecture that tries to combine the advantages of
the above two architectures: interprocess communication ¢
be fast and GC latency for the frequent collections of the
process-local heaps is expected to be small. No locking is re
quired for the garbage collection of the process-local beap
and the pressure on the shared heap is reduced so that it doe
not need to be garbage collected as often. Also, as in the
process-centric architecture, when a process terminiages,
local memory can be reclaimed by simply attaching it to a
free-list.

Note that these runtime system architectures are appdidaball
concurrent systems that use message passing. Their agivaatad
disadvantages do not depend in any way on characteristittee of
ERLANG language or its current implementation.

In this paper we concentrate on the hybrid architecture.réhe
sons are both pragmatic and principled: Pragmatic becaisart
chitecture behaves best in practice, and principled becagsm-
bines the best performance characteristics of the otheruntime
system architectures. Also, the garbage collection teghas de-
veloped in its context are applicable to the other architest with
only minor adjustments.

AssumptionsThroughout the paper, for simplicity of presen-
tation, we make the assumption that the system is running on a
uniprocessor, and that message passing and garbageioaolledt
though incremental operations, have control over theiemigion

(i.e., although they have to respect their work- or timeeblaguanta,
they cannot be interrupted by the scheduler at arbitramytpavhen
collecting).

3. ORGANIZATION OF THE HYBRID
ARCHITECTURE

Figure 1 shows an abstraction of the memory organizatiohdn t
hybrid architecture. In the figure, areas with lines angsgishow
currently unused memory; the shapes in heaps and arrows-repr
sent objects and pointers. In the shown snapshot, threegses
(P1, P2, and P3) are present. Each process has a process contr
block (PCB) and a contiguous private memory area with a stack
and a process-local heap growing toward each other. Theokize
this memory area is either specified as an argument teghen
primitive, set globally by the user for all processes, oradét to
a small system constant (currently 233 words). Besidesriliatp
areas, there are two shared memory areas in the system; ethe us
for binaries above a certain size (i.e., a big object area)ashared
heap area, intended to be used for data sent between preogesse
the form of messages. We refer to the latter area asnb&sage
area

3.1 The pointer directionality invariants

A key point in the hybrid architecture is to be able to garbage
collect the process-local heaps individually, withoutliog at the
shared areas. In a multithreaded system, this allows ¢afeof
local heaps without any locking or synchronization. If, ba bther
hand, pointers from the shared areas to the local heaps Wwere a
lowed, these would then have to be traced so that what they poi
to would be considered live during a local collection. Thisild be
achieved by a write barrier, but we want to avoid the overhibad
this incurs. The alternative, which is our choice, is to neimas
an invariant of the runtime system that there are no poiritera
the shared areas to the local heaps, nor from one procesisalea
to another. Figure 1 shows all types of pointers that cart extbe
system. In particular:

p1
’ PCB ‘
Stack

P2

P

=
|

—

hp

!

3

@D
/vC)

Process-local

Heap
Ao A L
7 Shared
k g é/ K é/ Area for
7 7 Binaries

Shared Heap (Message Area)

Figure 1: References allowed in the hybrid architecture.

e The area for binaries contains very few references and these
are only from the header of a binary object to the start of the
actual binary; these are shown in the figure. Note that these
pointers will not be seen by the garbage collector.

e The message area only contains references to the shared area
for binaries or to objects within the message area itself.

e Neither the shared area for binaries nor the message area con
tains any cyclic data.

The pointer directionality property for the message arezlse
crucial for our choice of memory allocation strategy, siiiceakes
it easy to test at runtime whether or not a piece of data reside
the message area by making a simpl€l) pointer comparison.
(There are several possible implementations with this dexity,
the simplest being mapping the message area to a singlgaont
block of memory.)

3.2 Allocation in the hybrid architecture

To take full advantage of the organization of the hybrid &rch
tecture, the system needs to be able to distinguish betwatan d
which is process-local and data which is to be shared, ised as
messages. This can be achieved by user annotations on tive sou
code, by dynamically monitoring the creation of data as pseg
in [13], or by the statianessage analysihat we have described
in [6] and integrated in the hybrid runtime system configiorabf
Erlang/OTP.

For the purposes of this paper, the details of the messagesina
are unimportant and the interested reader is referred tdriead,
it suffices to understand how the analysis guides allocatiatata
in the compiler. The allocation can be describedibscation by
default on the local heap and shared allocation of possibés-m
sages More specifically, data that igkely to be part of a message
is allocated speculatively on the shared heap, and all oidaron
the process-local heaps. To maintain the pointer direalitynin-
variants, this in turn requires that the message operanal$ s#¥nd
operations are wrapped with a copy-on-demand operatioichwh
verifies that the message resides in the shared area (asahotes]
this can be arO(1) operation), and otherwise copies the locally
allocated parts to the shared heap. However, if the messeage a

ysis can determine that a message operandtalready be on the
shared heap, the test can be statically eliminated.

Note that the copying semantics of message passin@imEG
and the absence of destructive updates allows the messalgsian
to safely both underapproximate and overapproximate usiataf
as messages. With underapproximation, the data will beeddpi
the message area in the send operation and the behavior lof-the
brid architecture will be similar to the process-centrichétecture,
except that data which is repeatedly passed from one pracess
another will only be copied once. On the other hand, if thdyana
sis overapproximates too much, most of the data will be atkxt
on the shared heap, and we will not benefit from the process-lo
heaps; i.e., data will need to be reclaimed by global garbatiec-
tion.

3.3 Allocation characteristics of Erlang
programs

In the eyes of the memory manager, the Erlang heap only con-
tains two kinds of objects: cons cells and boxed objects. eBox
objects are tuples, arbitrary precision integers, floataries, and
function closures. Boxed objects contain a header word wiiic
rectly or indirectly includes information about the objsdize. In
contrast, there is no header word for cons cells. Regardéag h
allocation, we have run a wide range of Erlang programs and co
mercial applications we have access to, and have discoveatd
nearly three quarters (73%) of all heap-allocated objedsans
cells (of size two words). Out of the remaining ones, less ¥4 is
larger than eight words. Although these numbers have tokemnta
with a grain of salt, since each application has its own mgmor
allocation characteristics, it is quite safe to concludat,tin con-
trast to e.g. a Java implementation, there is a significamtan of
heap-allocated objects which are small in size and do ndtgon
a header word. Adding an extra word to every object signifigan
penalizes execution and space consumption and is themdosn
option we consider. How this constraint influences the desig
the incremental garbage collector is discussed in Section 5

4. GARBAGE COLLECTION IN THE
HYBRID ARCHITECTURE

We discuss the garbage collection schemes that are employed

based on the characteristics and intended use of each meneary

4.1 Garbage collection of process-local heaps

As mentioned, when a process dies, its allocated memory area

can be reclaimed directly without the need for garbage ctidla.
This property in turn encourages the use of processes asma for
of programmer-controlled regionsa computation that requires a
lot of auxiliary space can be performed in a separate pratess
sends its result as a message to its consumer and then dies.
fact, because the default runtime system architecturedrandny
years been the process-centric one, alot of Erlang apigiicahave
been written and fine-tuned with this memory management mode
in mind?!

When a process does run out of its allocated memory, the run-
time system garbage collects its heap using a generatidrealey-
style semi-space stop-and-copy collector [7]. (Data hasute
vive two garbage collections to be promoted to the old geimerd
Also when running native code instead of bytecode, the cite
is guided bystack descriptorgalso known astack mapgsand the

Lin this respect, process-local heaps are very muchdikeasused by the Apache
Web server [24] to deallocate all the memory allocated by b ¥égipt once the script
has terminated.

In

root set is further reduced by employiggnerational stack scan-
ning [9], an optimization which reduces the cost of scanning the
root set by reusing information from previous GC scans. é\thh
this collector cannot give any real-time guarantees, panses
when collecting process-local heaps are typically not &dlera in
practice. This is because most collections are minor anefibre
quite fast, and as explained above many Erlang applicatiane
been programmed to use processes for specific, fine-graaskd t
that require a relatively small amount of memory. Moreower;
cause process-local heaps can be collected independeratigul-
tithreaded implementation, pauses due to collecting psetecal
heaps do not jeopardize the responsiveness of the entitensys
as the mutator can service other processes which are inalg re
queue.

4.2 Garbage collection of binaries

The shared area for (large) binaries is collected usifigrence
counting[11]. The count is stored in the header of binaries and
increased whenever a new reference to a binary is createsh(wh
a binary is e.g. copied to the message area in the send apgrati
Each process maintaingemembered lisvf such pointers to bina-
ries stored in the binary area. When a process dies, theenefer
counts of binaries in this remembered list are decreasedmnias
action happens for references which are removed from themrem
bered list as part of garbage collection. Since cycles iargs are
not possible, cycle collection is not needed and garbadeatian
of binaries is effectively real-time.

4.3 Garbage collection of the message area

Since the message area is shared between processes, étgegarb
collection requires global synchronization. The root seypically
large since it consists of both the stacks and the proces$teaps
of all processes in the system. As a result, pause times ffecting
the message area can be quite high.

This situation can be ameliorated as follows:

e By splitting the message area into generations and perform-
ing generational collection on this area. In fact, one can em
ploy a non-movingcollector (such asnark-and-sweeépfor
the old generation to avoid the cost of repeatedly having to
copy long-lived objects. (We still prefer to manage the ygpun
generation by a copying collector, because allocatiorsiefa
in compacted spaces.)

e By performing an optimization, callegenerational process
scanning which is the natural extension of generational root
scanning from the sequential to the concurrent setting.eMor
specifically, similarly to how generational stack scanriies
to reduce the root set which has to be considered during a
process-local GC to only the “new” part of the stack, gener-
ational process scanning tries to reduce the number of pro-
cesses whose memory areas are considered part of the root
set. In implementation terms, the runtime system maintains
information about which processes have been active (or re-
ceived a message) since the last garbage collection and con-
siders only those processes as part of the root set during the
frequent minor collections.

All these techniques are used in the hybrid architecture aard
quite effective. However, they can of course not provide i&@aJ-
time guarantees—not even soft real-time ones—and canewtipr
GC of the message area becoming a bottleneck in highly cencur
rent applications. For the message area, we need a GC métktod t
is guaranteed to result in low pause times.

(collected by an incremental copying collector)

Young Nursery From-space Fwd

Generation

Niop

allocation

limit

Allocated
space

- Free space
\/\ Free-list

—
NIimit

SN N

Black-map-

(collected by an incremental mark—and-sweep collector)

Old
Generation

]

Figure 2: Organization of the message area.

Note that reference counting it the most appropriate such
method. The main reason is that one cannot wait until a psoces
dies to decrease reference counts of messages that a phacess
sent to or received from other processes; consider for ebeathp
case of a Web server servicing requests. Furthermore nefere
counting typically imposes a non-negligible overhead. ffedént
real-time or incremental GC is called for. We describe the we
designed and chose to implement in the next section.

5. INCREMENTAL COLLECTION IN THE
SHARED MEMORY AREA

Organization of the message aremigure 2 shows the or-
ganization of the message area when performing increm&gal
of the young generation.

e The old generation, which is collected by a mark-and-sweep
collector, consists af pages (each page beidgK words in
size). Allocation uses first-fit in the free-list. If thererist a
large enough free area in this list, a garbage collectiohef t
old generation is triggered. If, after a non-moving coliect
cycle, there is less than 25% free in the old generation, we
allocate a new page in order to reduce the risk of triggering
another collection soon.

(resizeable) data structure is used; however, we prefer the
simplicity of implementation and constant access time that
an array provides.

e Finally, we also use a bit array (thdack-map and a pointer
into the nursery (thallocation limit), whose purposes and
uses we describe below.

Terminology.We use the termollection phaseo refer to a con-
tiguous period of incremental garbage collection, andéhmtol-
lection cycleto refer to a complete collection of the young gener-
ation. After a collection cycle has finished, all live datas teeen
rescued from the nursery and moved to the old generation.|-A co
lection cycle may include aon-moving collection cyclsince it is
the garbage collector of the young generation that allscat¢he
old generation and is thus the one to trigger its collection.

5.1 The incremental collection algorithm

A new collection cycle begins with the from-space and thesnur
ery switching roles and with all forwarding pointers beieget.

All processes are then marked as active (i.e., are placduein t
active queug the first process from this queue is picked up and
a snapshotof its root set is taken. (The process does not need
to be suspended to have its snapshot taken.) When all roots fo
this process have been rescued, the process is removedteom t
queue. During a collection cycle, inactive processes magpibe
active agaironly by receiving a message from another active pro-
cess. This effectively acts aswaite barrier, albeit one with an
extremely low cost; namely, one extra test for each entinel -
eration. (Note that if a sender process is not active, thireethe
message has been allocated in the message area after dnticoll
has started, and thereby placed in the nursery, or the neéseay
already been copied to the old generation.) The collectiabec
will scan the root set as long as there are active procesatesah-
tain “new” live objects (i.e., objects in the from-space atready
copied to the to-space). During a collection cycle, theemtr
might of course yield to the mutator as described below.

When a live object is found, and this object has not yet been
forwarded, it is copied to the old generation and added t@ekst
of gray objects. A forwarding pointer for this object is phakin
the forwarding pointer array. If the object has been presliptor-
warded, we update its reference in the root set to point toéve
location for the object. When the active queue is empty, tile ¢

e The young generation consists of two equal-sized parts, the lection cycle continues to process all the gray objects riteoto

nurseryand thefrom-space The size of each park, is con-
stant and in our implementation we have choses 100K
words. The nursery is used by the mutator as the alloca-
tion area during a collection cycle. The from-space is used
in the incremental copying collection; the-spaceis the old
generation.

e \We also use an area (currently an array of diyef forward-
ing pointers(denoted as Fwd in Figure 2). The reason is that
the mutator does not expect to find forwarding pointers in

rescue their children. This in turn possibly puts more disjea the
gray stack.

If during collection of the young generation, the old getiera
overflows, its non-moving incremental garbage collectotriis-
gered. This collector uses its own tricolor scheme [18] Enpl
mented as follows. We use a stack of references to keep tfack o
gray objects. We also use a bit array (tilack-map to mark ob-
jects as black (i.e., fully processed). The black-map isledeince
there is no room for any mark-bits in the actual objects.

At the end of the collection cycle we also have to look through

the place of objects. Since the mutator can access objects ine gpjects in the nursery to update references to data widsh

the from-space during a collection cycle, forwarding peiat
cannot be stored in this area. This would require either mak-

ing the mutator perform a test on each heap pointer derefer-

been moved from the from-space by the collection (or pogsibl
copy these objects). This is because the mutator can crefate r
erences from objects in the nursery to objects in the froatsp

encing and paying the corresponding cost, or the systematic during a collection cycle.

use ofindirection (as in [5]) and employing aad barrier
mechanism to maintain the to-space invariant (as e.g.)n [3]
which also has a non-trivial associated cost.

In our implementation, the size of the area for the forwagdin
pointers isconstant It could be further reduced if a different

5.1.1 Interplay between the mutator and the collector
In incremental tracing garbage collectors, the amount akwo
to be done in one collection cycle depends on the amount ef liv
data when @napshotof the root set is taken. Since we can not

know this quantity, we have to devise a mechanism that alisis
control how much allocation the mutator is allowed to do lesw
two collection phases. (Relying on user-annotations toi§psuch
a quantity is neither safe nor a “user-friendly” option i tlypical
multi-thousand line application domain oREANG.)

As with all incremental collectors, a crucial issue is toidec

how and when the switch between the mutator and the collector

will occur. We use arallocation limitto interrupt the mutator (cf.
Figure 2). When the mutator reaches this limit the collettan-
voked. This is a cheap way to control the interleaving anthéur
more imposes no additional overhead on the mutator. Thig-is b
cause, even in a non-incremental environment, the mutherks
against a limit anyway (the end of the nurseiN,..:). The allo-
cation limit is updated in the end of each collection phasseta
on a calculated estimate as described below. To influendettre
action between the mutator and the collector, the user caoseh
between avork-basedand atime-basedapproach, which update
the allocation limit in different ways.

5.1.2 The work-based collector

The underlying idea is simple. In order for the mutator to-all
catew,s words of heap, the collector must reclaimwords of live
data, wheravys < w. In our implementation, the value af is
user-specified. (However, regardless of the user settinggnsure
thatwy, < w in all collection phases.) The choice af natu-
rally affects the pause times of the collector; see Sectidn/ter
each collection phase the allocation limit is updatedvig, + w,
whereN;,,, denotes the top of the nursery (i.e., its first free word,
cf. Fig. 2). Note that this is exact, rather than an estimate ¢he
case of the time-based collector below.

Since the area we collect, the from-space, has the samessize a

the nursery we can guarantee that the collection cycle esidseh
the nursery overflows and the mutator cannot allocate furthre
fact, since this is a young generation and most of its datdstém
die young, the collection cycle will most often be able tdect the
from-space before significant allocation takes place imtirsery.

5.1.3 The time-based collector

In the time-based collector, ttomllector time quantupdenoted
t, determines the time interval of each collection phaseerAfiis
quantum expires, the collector is interrupted and the rooiatre-
sumed. In our implementationjs specified (inusecs) by the user
based on the demands of the applicafion.

To dynamically adjust the allocation limit, we keep tracktioé
amount of work done during a collection phase. We denotebthis

We now get:

-5
GCphases

wheref is the amount of free memory in the nursery. Thus, we can
now update the allocation limit t&;., + was.

5.2 Some optimizations

In the beginning of the collection cycle, all processes mgis-
tem are put in the active queue, in a more or less random drder.
However, each time an active process receives a message, it i
moved last in the queue (as if it were reborn). This way, wekee
the busiest processes last in the queue and scan them as late a
possible. The rationale for wanting to postpone their pgsitey is
three-fold:

wm

1. avoid repeated re-activation of message-exchangiraggpses;

2. allow processes to execute long enough for their data-to be
come garbage;

3. give processes a chance to die before we take a snapshot of
their root set; in this way, we might actually avoid consider
ing these processes.

Another way of postponing processing members of the actieeig
is to process the stack of gray objects after we are finishétesich
process (instead of processing all processes in the acteugedfirst
and then processing the complete gray stack).

In minor collections of the shared message area, we remember
the top of heap for each process and only consider as paref th
root set data that has been created since the process waofake
the active-queue.

Finally, a very important optimization is to have processal
garbage collections record pointers into the message araae-
membered set. This way we avoid scanning the old generation o
their local heaps.

5.3 Characteristics of the collector

First of all note that the collector does not require any kead
word in the objects in order to perform incremental copyiog c
lection in the young generation. Therefore, it imposes rertorad
to allocation. The collector instead uses an extra spaceelyahe
forwarding area, whose size is bounded3byRecall that® does
not increase during GC and is not affected by the allocati@marc-
teristics of the program which is being executed. In the edega-
tion, the only extra overhead is one bit per word for the blawip
and a dynamically resizeable stack for the gray objectse Muit

AGC and since thisis a tracing collector it is eXpressed in numbe for the frequent collections of the young generation, the sf this

of live words reclaimed, i.e.,
AGC = reclaimed after GC — reclaimed before GC

Assuming the worst case scenario (that the entire fromespesize
> is live), at the end of a collection phase we (conservatjvesyi-

gray stack is bounded by /2. The space overhead of the incre-
mental collector is quite low.

Without incrementality, the collector behaves asnapshot-at-
the-beginninglgorithm [25, Section 3.3.1]. As explained above, in
the incremental collector we postpone taking the snapshpitos
cesses in the active queue as long as possible. By increligenta

mate how much of the total collection we managed to do. Thenwe taking partial snapshots of the root set, i.e., only one ggsat a

again conservatively, estimate how many more collecticasph it
will take to complete the collection cycle, provided we abéeao
continue collecting at the same rate.

> — reclaimed after GC
AGC

chhases -

2When needed, the collector is allowed some “free” extensioarder to update the
reference counts of binaries and possibly clean up aftlf.ifBhis deadline extension
is typically very small; cf. Section 6.2.

time, we allow the remaining processes to create more garasg
we collect the process at the head of the queue. This meanseha
will most likely collect more garbage than a pure snapslidhe-
beginning collector.

An unfortunate side-effect of the root set minimizatioroetfde-
scribed above is that since we do not actually scan the old gen
eration of process-local heaps during root-scanning, hiyt the
set of references to the message area recorded during pfocas

The queue order is actually determined by the age of the pseseoldest first.

Benchmark|| Processes Messages Local GCg Message area GCs
worker 403 1,650 Benchmark w = 2|w = 100|w = 1000 |¢ = 1000
msort_q 16,383 49,193 worker 6.7K| 25M| 98.7K 10K —
adhoc 137 246,021 msort_q 357|79,190 1,716 174 222
yaws 420 | 2,275,467 adhoc 1.1 M|54,934 3,737 390 —
mnesia 1,109 | 2,892,855 yaws 2.1M|32,204 1,393 290 1,551
mnesia 892 K| 12,581 671 219 775

Table 1: Concurrency characteristics of benchmarks.
Table 2: Number of GCs when using the incremental collectors

garbage collection, some of the rescued objects might lactum

already dead at the start of the collection. An object mayefioee high-resolution performance monitoring counters on Lianx al-
be kept in the message area for a number of collection cyakdsau lows us to measure GC pause timegin
major process-local garbage collection updates the reraerdiset .
of objects (or the process dies) and triggers the next daiecy- 6.1 Runtime and collector performance
cle of the message area to finally remove the object. This vemwe To provide a base line for our measurements, Table 3 shoves tim
is an inherent drawback of all generational schemes. spent in the mutator, garbage collection times, and GC pimes
for all benchmarks when using the non-incremental colleftio
6. MEASUREMENTS the message area. Observe that the first three columns aftthee t

are inms while the remaining ones ins. Table 4 confirms that the
time spent in the mutator and in performing garbage cothectif
process-local heaps is not affected by using the increrheoitac-
tor for the message area. Depending on the configuratiomvire
head for the incremental collector compared to the noreimental
worker Spawns a number of worker processes and waits for them collector ranges from a few percent to 2.5-3 times for most pr
to return their results. Each worker builds a data strudture grams. The overhead is higher (5.6 times) darker which is a
several steps, generating a large amount of local, temporar program that was constructed to spend a significant pars tifiite
data. The final data structure is sent to the parent process.allocating in (and garbage collecting) the message area.
This is an allocation-intensive program whose adversasaal Considering total execution time, the performance of a@papli
ture is a challenge for the incremental garbage collector. tions is practically unaffected by the extra overhead ofqueting
o . . incremental GC in the message area. Even for the extreme case
msort_q A distributed implementation of merge sort. Each pro- ot \orker, which performs 2.5 million incremental garbage col-

cess receives alist, implicitly splits it into two sublistgin- lections of the message area when= 2 (cf. Table 2), its total
dexing into the original list, and spawns two new processes gyacytion time is 1.7 times that with non-incremental GC.
for sorting these lists (which are passed to the processes as

messages). Although this program takes a very small time §,2 Garbage collection pause times

to complete, we use it as a benchmark because it Spawns a tapje 5 shows pause times for the incremental work-based col
large number of simultaneously live processes (cf. Table 1) |ocor ysing three different choices of, collecting2, 100, and

and thus its root set is quite large. 1000 words, respectively. As expected, for most benchmarks, the

adhoc A framework for genetic algorithms. It solves deceptive ncremental garbage collector significantly lowers GC pairaes,
problems while simulating a population of chromosomes us- POth their maximum and mean values (the columns titled Gearm
ing processes and applies crossovers and mutations. ThesShow the geometric mean of all pause times) compared with the

AdHOC prograrft consists of about 8,000 lines of Erlang Non-incremental collector (cf. the last three columns dil&zg).
code. The maximum pause times géws (for w = 100 and 1000) are

the only slight exception to this rule, and the only explamatve
yaws A high-performance multithreaded HTTP Web server where can offer for this behavior is that perhaps message liveiddtard
each client is handled by a separate Erlang process. *Yaws to come by in this benchmark. The mean GC pause time values, in
contains about 4,000 lines of code (excluding calls to func- particular the geometric means, show a more consistentimeha
tions in Erlang/OTP libraries such as HTTP, SSL, etc). We In fact, one can see a correlation between the value ahd the
usedhttperf [19] to generate requests for Yaws. order of pause times ins.

The distribution of pause times (jns) for the benchmarks using
the work-based incremental collector is shown in Figufe Bae
majority of collection phases are very fast, and only a venals
percentage of the collections might be a problem for a lie@-tip-
plication. On the other hand, a work-based collector whatmon
Some more information on these benchmarks (number of mweses ~ 0f work is defined in terms of “words reclaimed” naturally cah
spawned and messages sent between them) is shown in Table 1. guarantee an upper limit on pause times, as data to scaveghe m

The performance evaluation was conducted on a dual proces-be quite hard to come by.
sor Intel Xeon 2.4 GHz machine with 1 GB of RAM and 512 KB A time-based incremental collector can in principle avditst
of cache per processor, running Linux. The kernel has been en problem; see [3]. Care of course must be taken to detect & ca

hanced with theperfctr driver [21], which provides access to when the mutator is allocating faster than the collectorreataim,
and take an appropriate action. Figure 4 (cf. also Table @ysh

The benchmarksror the performance evaluation we used two
synthetic benchmarks and three Erlang applications wiibtade-
gree of concurrency from different domains:

mnesia The standard TPC-B database benchmark for the Mnesia
distributed database system. Mnesia consists of aboud@2,0
lines of Erlang code. The benchmark tries to complete as
many transactions as possible in a given time quantum.

4ADHOC: Adaptation of Hyper Objects for Classification.
SYAWS : Yet Another Web Server; se@aws . hyber .org. Smnesia is not included in Fig. 3 as its pause times do not show angtimteresting.

40%

35%

30%

25%

20%

15%

10%

5%

0%

80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

<1 1-

70337

(a) worker (w = 2)

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

<1 1 2-
3089

(d) msort_q (w = 2)

60%

50%
40%
30% -
20% -
10% -
0% -

v e Yo Yo Ve Yo Yo b %

50%

40% -
30%
20%
10%
0% -
<2 % & = < R

Q.
5 % . <.
“+ <)
[0’F
(b) worker (w = 100) (c) worker (w = 1000)
18% 35%
15% 30%
25%
12%
20%
9%
15%
% 10%
3% 5% A
0% 0%
4 % e % % \’0 % %, % ‘& 2 2%, Gq,
"o EX ‘9@7‘3 6\00 %7‘900

(e) msort_q (w = 100)

(f) msort_q (w = 1000)

18% 35%
30%
25%
20%
15%
10%
5%
<1 5 10 15 20 0 0 0 o % B 0 D D %% % %y %, 9% % 0%
v‘oo ‘}Qg, % % % % % % » % % % \2{00 (30 «'
(g) adhoc (w = 2) (h) adhoc (w = 100) (i) adhoc (w = 1000)
50% 35%
30%
40%
25% -+
0%
20% -
20% 15% -
10% -
10%
5% -
- 0%
& Y b Y % 2 & s 0% -
v{voazozezezvz@zoeo‘&oz\ %> % % 9% % % % %) ogs(,J %, @, 2 a,
(S % N
2 id

(1) yaws (w = 2)

(k) yaws (w = 100)

() yaws (w = 1000)

Figure 3: Distribution of pause times (in us) for the work-based incremental collector.

Total Time ¢ns) Local GC Pause Timeg:6) | Message area GC Pause Timgs)(
Benchmark|| Mutator | Local GC | MA GC Max | Mean | Geo.Mean Max | Mean Geo.Mean
worker 3,591 2,756 1,146 | 7,673 395 68 | 178,916| 89,811 77,634
msort_q 174 3 29 577 9 4 16,263 | 9,807 11,646
adhoc 61,578 7,848 27 88 6 7 1,650 | 1,242 1,174
yaws 240,985 11,359 153 370 8 7 1,088 649 636
mnesia 53,276 4,487 88 || 4,722 4 5 1,413 485 458

Table 3: Mutator and total GC times (in ms) and pause times (inus) using the non-incremental collector.

Message area (MA) GC
Benchmark|| Mutator | Local GC | w =2 | w =100 | w = 1000
worker 3,560 2,798 | 6,445 6,296 6,341
msort_q 164 3 54 34 33
adhoc 61,045 8,194 244 203 78
yaws 237,629 11,728 373 374 242
mnesia 52,906 4,439 182 164 156

Table 4: Mutator times and total GC times (in ms) using the incremental (work-based) collector.

Local GC Pause Timeg:6) Message area GC Pause Timgs)(
w=2 w = 100 w = 1000
Benchmark|| Max | Mean| Geo.mean Max | Mean| Geo.meanl Max | Mean | Geo.mean Max | Mean| Geo.mean
worker 6,891 390 68 | 70,337 2 0| 83,450 63 7 196,450 635 72
msort_q 611 8 4| 3,089 0 0| 3,142 19 11| 4,511 204 110
adhoc 125 6 7| 1,029 3 2| 1,051 53 46| 1,233 202 158
yaws 266 8 8| 1,202 9 1| 1,324 268 36| 1,586| 836 853
mnesia 4,751 4 5| 1,014 14 1| 1,027 244 43| 1,212 714 787

Table 5: Pause times (inus) for the incremental (work-based) collector.

counts of GC pauses when running three of the benchmarks pro- 0 I | T I T I I | I | I 1 I I
grams using the time-based incremental garbage colledtoraw I | I l | |
value oflms (1000us). As mentioned in Footnote 2, when needed,
the collector is allowed some small deadline extensionydeioto
possibly clean up after itself. This explains why there israk
number of values abovi®00us. Note that in Figures 4(c) and 4(b)
the number of GCs (the Y axis) is in logarithmic scale.

0,8

0,6

0,4

Mutator CPU Utilization

0,2 4

o0 +-—r+r—rr——-r—/T"-"-">-"r"—-"""r"—"-—"—"""""T—"r"r"
6_3 Mutator ut|||za'[|0n 30 31 32 33 34 35 36 37 38 3$im4;)($1 42 43 44 45 46 47 48 49 50

In any time window, the notion ahutator utilizationis defined
as the fraction of time that the mutator executes; see [8]. Figure 6: Mutator utilization of yaws (w = 100) for the work-

Figure 5 shows mutator utilization for the programs we used a based incremental collector shown in detail.
benchmarks when using the work-based incremental cofléoto
different values ofw. The two synthetic benchmarks exhibit in- using the work-based one. The choice of an otherwise smdll, b
teresting patterns of utilization. As expected, therker bench- compared with the total execution time relatively high irsttase,
mark suffers from poor mutator utilization since it is desg to be t value (Lms) jeopardizes the mutator utilization afsort_q.
allocation-demanding and be a serious challenge for thrernmen-
tal collector. (The first interval of high utilization is thiene before 7. RELATED WORK
the first collection is triggered and the remaining two argqus '
after a collection cycle has finished and there is free spaiténl Runtime system organizatioBy now, several works have
the nursery that the mutator can use for its allocation ng&im- suggested detecting thread-local objects via ststt@ape analysjs
ilarly, the mutator utilization ofnsort_q drops significantly when mainly of Java programs; notable among them are [4, 10, 28. T
live data in the message area is hard to come by. On the othdyr ha goal has been to identify, conservatively and at compiletithe
the mutator utilization of the three “real” programs is geeeven objects that are only going to be accessed by their credtimzd
for w = 2, alhough foryaws and mnesia this is apparent only and allocate them on the thread-local stack, thereby avpislyn-
with the time axis streched out; Figure 6 shows the same data a chronization for these objects. In fact, the analysis of j22x-
Figure 5(k) but only for a portion of the total time neededun the ploited in [23] by suggesting the use of thread-local heamkh

benchmark. for non-escaping objects and a shared (portion of the) heraglif
Mutator utilization for the time-based incremental coltecis other data. Thread-local heaps for Java have also beenatddoc
shown in Figure 7. For botyaws (mainly) andmnesia the utiliza- in [13], this time guided by information gathered by a prafilether

tion using the time-based collector is slightly worse tHzat tvhen than by static analysis.

60 100

103 122

10

100

10

Count
Count

Count

|

JJMHI T

0 100 200 300 400 500

—

343 503 763 1000 1001 1002 1003 1012

Time (us)

(a) msort_q (t = 10001s)

Time (us)

(b) yaws (¢ = 1000us)

iy

600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Time (us)

(c) mnesia (t = 1000us)

Figure 4: Counts of pause times (inus) for the time-based incremental collector.

Note that, mainly because of the differences in the senmsnfic
Java and ELANG, all the above works attack the problem of mem-
ory allocation in the opposite direction than we do. Ratthant
allocating in thread-local heaps by default and using aisly de-
termine which objects are possibly shared, they try to dater
objects that willonly be accessed by their creating thread and allo-
cate them in a thread-local memory area. In contrast, thsages
analysis that guides our allocator, identifies data thdtpribably
be used in a message, enabling a speculative optimizatbalth-
cates data in the shared message area, thereby eliminzingéd
for copying at send time and making it possible to removetiune-
checks altogether. The closest relative of our work is thenorg
architecture described in [12] which uses thread-locakaliion for
immutable objects in Caml programs.

Memory management of Erlang progranTse soft real-
time concerns of the BLANG language call for bounded-time GC

An excellent discussion and analysis of the trade-offs betw
work-based and time-based incremental collectors appe4ss.
Our work, although done independently and in a very diffecen-
text than that of [3], is quite heavily influenced by it, pretsion-
wise. Given the different semantics (copying vs. sharirfg)om-
currency in RLANG and Java, and the different compiler and run-
time system implementation technologies involved in Egl@TP
and in Jikes RVM, it is very difficult to do a fair comparison-be
tween the Metronome (the collector of [3]) and our increraént
collector. As a rather philosophical difference, we do rek the
user to guide the incremental collector by specifying th&imam
amount of simultaneously live data or the peak allocatioe ozer
the time interval of a garbage collection. More importanthap-
pears that our system is able to achieve significantly loveeisp
times and better mutator utilization than the Metronome. B&fe
lieve this can mostly be attributed to the memory allocasivategy
of the hybrid runtime system architecture which is locale®fault.

techniques. One such technique, based on a mark-and-sweep &g, the other hand, the utilization of our collector is not agis-

gorithm taking advantage of the fact that the heap in anANG
system isunidirectional(i.e., is arranged so that the pointers point
in only one direction), has been described in [1], but impassig-
nificant overhead and was never fully implemented. Sinyil§ti4]
describes the design of a near-real-time compacting ¢coli@cthe
context of the Gambit-C Scheme compiler. This garbage ciolte
was intended to be used in the Etos (Erlang to Scheme) sysiem b
never made it to an Etos distribution.

Incremental and real-time GC techniqueasihe context
of other (strict, concurrent) functional language implata¢ions,
the challenge has been to achieve low GC latency withouthpayi
the full price in performance that a guaranteed real-timbage
collector usually requires. Notable among them is the quesdi
time collector of Concurrent Caml Light [12] which combinas
fast, asynchronous copying collector for the thread-$jpegbung
generations with a non-disruptive concurrent mark-andepacol-
lector for the old generation (which is shared among allatis}.
Many concurrent (real-time) garbage collectors for fuvral
languages have also been proposed, either based on in¢a¢men
copying [5, 15], or orreplication [20] (see also [8] for a multi-
processor version of one such collector). The main diffesene-
tween them is that incremental collectors based on copgquire
a read barrier, while collectors based on replication doImstead,
they capitalize on the copying semantics of (pure) funetigmo-
grams, and incrementally replicate all accessible objesisg a
mutation log to bring the replicas up-to-date with changesienby
the mutator.

tent as that of [3] for adversarial, synthetic prograis,t then
again we are interleaving the collector and the mutator iruahm
finer-grained manner (e.g., collecting just 2 words) or weefarc-
ing our collector to run in a considerably smaller collecjoantum
(1ms vs. 22.2ms which [3] uses).

8. ACKNOWLEDGMENTS

This research has been supported in part by a grant from the
Swedish Research Council (Vetenskapsradet) and by theESST
(Advanced Software Technology) competence center witttinat
ing funds by Ericsson and T-Mobile.

9. REFERENCES

[1] J. Armstrong and R. Virding. One pass real-time generat
mark-sweep garbage collection. In H. G. Baker, editor,
Proceedings of IWMM'95: International Workshop on
Memory Managemenhumber 986 in LNCS, pages
313-322. Springer-Verlag, Sept. 1995.

[2] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.
Concurrent Programming in ErlandPrentice Hall Europe,
Herfordshire, Great Britain, second edition, 1996.

[3] D.F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In
Conference Record of POPL 2003: The 30th

7Of course, this very much depends on the choice of thesegrsir

Mutator CPU Utilization Mutator CPU Utilization Mutator CPU Utilization Mutator CPU Utilization

Mutator CPU Utilization

10 10 10
5 5
08 2 208
2 Z
06 5 506
2 2
o o
04 9 O 04
o s
£ g
02 3 202
00 00
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 & 7 8 9
Time (s) Time (s) Time (s)
(a) worker (w = 2) (b) worker (w = 100) (c) worker (w = 1000)
10 10 10
5 5
08 £ 08 208
£ E
06 506 506
2 2
o [N
04 Y04 Q04
2 9
] 8
02 202 202
00 00 00
0 005 01 015 02 025 03 03 04 0 005 01 015 02 025 03 035 0 005 01 015 02 025 03 035
Time (s) Time (s) Time (s)
(d)y msort_q (w = 2) (e) msort_q (w = 100) (f) msort_q (w = 1000)
10 10 10
IR R R RN L AR A A PN AR A R
08 208 208
E £
06 506 506
2 2
o o
04 904 O 04
s o
g g
0.2 202 202
00 — 00 —— 00 —
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 4 45 5 55
Time (s) Time (s) Time (s)
(g) adhoc (w = 2) (h) adhoc (w = 100) (i) adhoc (w = 1000)
10 10 10
5 5
08 208 208
E £
06 506 506
2 2
o o
04 904 O 04
s o
g g
0.2 202 202
0 10 20 30 40 5 6 70 8 9 100 110 0 10 20 30 40 50 60 70 8 90 100 110 120 13 0 10 20 30 40 50 60 70 8 9 100 110 120
Time (s) Time (s) Time (s)
() yaws (w = 2) (k) yaws (w = 100) () yaws (w = 1000)
10 10 10
3 5
08 208 208
3 2
06 506 506
2 2
o o
04 904 Q04
s o
g g
0.2 202 202
wh whr wh-
0 5 10 15 20 25 30 3 40 45 50 0 5 10 15 20 25 3 35 40 45 50 0 5 10 15 20 25 30 3B 40 45 50
Time (s) Time (s) Time (s)

(m) mnesia (w = 2)

(n) mnesia (w = 100)

(0) mnesia (w = 1000)

Figure 5: Mutator utilization for the work-based increment al collector.

Mutator CPU Utilization
o o k= ESd =
o = > © o

o
=)

[4]

(5]

(6]

[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

= 2 = =
= > © =}

Mutator CPU Utilization

=
>

Mutator CPU Utilization

=
=}

0 0,05 01 0,15 02 0,25 03 0,35 04 0 10 20 30 40 5 60 70 8 9 100 110 0 5 10 15 20 25 30 35 40 45 50

Time (s) Time (s)

Time (s)

(@) msort_q (b) yaws (c) mnesia

Figure 7: Mutator utilization for the time-based (¢t = 1000us) incremental collector.

SIGPLAN-SIGACT Symposium on Principles of
Programming Languagepages 285-298, New York, N.Y.,
Jan. 2003. ACM Press.

B. Blanchet. Escape analysis for Ja¥&: Theory and

practice ACM Trans. Prog. Lang. Sys25(6):713-775, Nov.
2003.

R. A. Brooks. Trading data space for reduced time and code
space in real-time garbage collection on stock hardware. In
G. L. Steele, editoiRProceedings of the 1984 ACM
Symposium on LISP and Functional Programmipages
256-262, New York, N.Y., 1984. ACM Press.

R. Carlsson, K. Sagonas, and J. WilhelImsson. Message
analysis for concurrent languages. In R. Cousot, editatic
Analysis: Proceedings of the 10th International Symposium
number 2694 in LNCS, pages 73-90, Berlin, Germany, June
2003. Springer.

C. J. Cheney. A nonrecursive list compacting algorithm.
Communications of the ACM3(11):677-678, Nov. 1970.

P. Cheng and G. E. Blelloch. A parallel, real-time garag
collector. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
pages 125-136, New York, N.Y., June 2001. ACM Press.

P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. Rroceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI'9Bages 162-173, New
York, N.Y., 1998. ACM Press.

J.-D. Choi, M. Gupta, M. Serrano, V. C. Shreedhar, anB.S.
Midkiff. Stack allocation and synchronization optimizats

for Java using escape analysdCM Trans. Prog. Lang.

Syst, 25(6):876-910, Nov. 2003.

G. E. Collins. A method for overlapping and erasure sifdli
Communications of the ACM(12):655-657, Dec. 1960.

D. Doligez and X. Leroy. A concurrent, generationallzsge
collector for a multithreaded implementation of ML. In
Conference Record of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languagesgies
113-123, New York, N.Y., Jan. 1993. ACM Press.

T. Domani, G. Goldshtein, E. Kolodner, E. Lewis, E. Rek,
and D. Sheinwald. Thread-local heaps for Java. In D. Detlefs
editor, Proceedings of ISMM’2002: ACM SIGPLAN
International Symposium on Memory Managemeages
76-87, New York, N.Y., June 2002. ACM Press.

M. Feeley and M. Larose. A compacting incremental
collector and its performance in a production quality
compiler. InProceedings of ISMM’98: ACM SIGPLAN
International Symposium on Memory Managemeages

1-9, New York, N.Y., Oct. 1998. ACM Press.

[15] L. Huelsbergen and J. R. Larus. A concurrent copying
garbage collector for languages that distinguish (im)iieta
data. InProceedings of the 4th ACM Symposium on
Principles and Practice of Parallel Programmingages
73-82, New York, N.Y., May 1993. ACM Press.

[16] E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A Hig
Performance Erlang system. fmoceedings of the ACM
SIGPLAN Conference on Principles and Practice of
Declarative Programmingpages 32—43, New York, NY,
Sept. 2000. ACM Press.

[17] E. Johansson, K. Sagonas, and J. Wilhelmsson. Heap
architectures for concurrent languages using message
passing. In D. Detlefs, editoRroceedings of ISMM’2002:
ACM SIGPLAN International Symposium on Memory
Managementpages 88—99, New York, N.Y., June 2002.
ACM Press.

[18] R. E. Jones and R. Lin&arbage Collection: Algorithms for
automatic memory managemedohn Wiley & Sons, 1996.

[19] D. Mosberger and T. Jin. httperf—a tool for measurindwe
server performanc&IGMETRICS Perform. Eval. Rev.
26(3):31-37, Dec. 1998.

[20] S. Nettles and J. O'Toole. Real-time replication gasa
collection. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
pages 217-226, New York, N.Y, June 1993. ACM Press.

[21] M. Pettersson. Linux x86 performance-monitoring deus
driver. http://user.it.uu.se/“mikpe/linux/perfctr/.

[22] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementatigrages 208-218, New
York, N.Y., June 2000. ACM Press.

[23] B. Steensgaard. Thread-specific heaps for multi-tteda
programs. IrProceedings of the ACM SIGPLAN
International Symposium on Memory Managemeages
18-24, New York, N.Y., Oct. 2000. ACM Press.

[24] L. Stein and D. MacEacherkiVriting Apache Modules with
Perl and C O'Reilly & Associates, 1999.

[25] P. R. Wilson. Uniprocessor garbage collection techeg] In
Y. Bekkers and J. Cohen, editoRroceedings of IWMM'92:
International Workshop on Memory Managementmber
637 in LNCS, pages 1-42, Berlin, Germany, Sept. 1992.
Springer-Verlag. See also expanded version as Univ. ofsTexa
Austin technical report submitted to ACM Computing
Surveys.

