
Mark and Split ∗

Konstantinos Sagonas 1,2 Jesper Wilhelmsson 1

1 Department of Information Technology, Uppsala University, Sweden
2 School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{kostis,jesperw}@it.uu.se

Abstract
The mark-sweep garbage collection algorithm constructs a list of
memory areas to allocate into (the free list) during its sweep phase.
This phase needs time proportional to the size of the heap which is
collected. We introduce mark-split, a non-moving garbage collec-
tion algorithm that constructs the free list during the mark phase by
maintaining and splitting free intervals. With mark-split, the sweep
phase of mark-sweep becomes unnecessary and the cost of collec-
tion is proportional to the size of the live data set. Our performance
evaluation, using a high performance Java implementation running
standard benchmarks, shows that mark-split can significantly re-
duce collection times compared with mark-sweep and requires lit-
tle extra space to do so. The overhead to the cost of marking is
moderate and often pays off for itself by avoiding the sweep phase.
Since there is no guarantee that this is always the case, we also
propose adaptive schemes that try to combine the best performance
characteristics of mark-split and mark-sweep collection.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—memory management (garbage collection)

General Terms Algorithms, Performance, Languages

Keywords Non-moving Garbage Collectors, Mark-and-Sweep,
Mark-and-Split, Java

1. Introduction
Many modern programming languages employ tracing collectors to
reclaim unused portions of dynamically allocated memory. Copy-
ing [6] and mark-sweep [10] are the two most commonly used
kinds of such collectors. The choice between them involves trade-
offs, which by now are well understood both theoretically and ex-
perimentally. A copying collector needs to reserve some memory to
copy the traced objects (the live data set) to, but it provides cheap
allocation, avoids fragmentation, and its running time is propor-
tional to the amount of live data, not the size of the heap which
is collected. On the other hand, a mark-sweep collector can com-
plete its mark phase in time proportional to the amount of live data,

∗ Research supported in part by grant #621-2003-3442 from the Swedish
Research Council (Vetenskapsrådet).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

but needs time proportional to the size of the heap for its sweep
phase. Since it is not uncommon for the amount of live data to
be only a small fraction of the heap which is collected, it has of-
ten been argued that copying collection is superior to mark-sweep
when judged from a purely performance perspective.

In practice, considerations other than performance may dictate
the choice between copying vs. mark-sweep. Unlike mark-sweep,
a copying collector moves objects. As such, it is not suitable in
environments (for example, in C or C++ with a standard compiler)
in which pointers cannot be identified with certainty. Also, copying
is often not a viable option for memory-demanding applications
since, for safety, half of the memory has to be reserved for the needs
of the collector rather than be available for the allocation needs of
the application. In some sense, this inherent drawback of copying
is very unfortunate since it is precisely in the case where the heap
size is large that the performance of a mark-sweep collector suffers
most from the complexity of its sweep phase.

In this paper, we develop an algorithm that has the advantages
of both techniques. More specifically, we propose mark-split, a new
garbage collection algorithm that does not move objects, requires
little extra space in practice, and has complexity proportional to the
size of the live data set, not the size of the heap which is collected.
The mark-split collector achieves these properties by building the
free list during marking, thereby rendering the subsequent sweep
phase completely unnecessary. The price to pay is increased mark-
ing cost. However, when the size of the live data set is small com-
pared to the size of the heap which is collected, or when the live
data forms big contiguous areas, the additional overhead is mod-
erate and the use of the mark-split technique typically pays off by
avoiding the cost of the sweep phase. Adaptive schemes, combin-
ing mark-sweep and mark-split, are of course also possible and are
briefly discussed.

We have implemented the mark-split garbage collection algo-
rithm in the BEA JRockit system, a commercial Java implementa-
tion. Our performance evaluation using the SPECjvm98 programs
as benchmarks shows that mark-split can achieve significantly bet-
ter garbage collection performance than the mark-sweep collector,
is able to reduce individual garbage collection pauses, and requires
little additional space. In fact, as the size of the allocated heap in-
creases, the performance advantage of mark-split over mark-sweep
manifests itself more and more clearly.

Overview We begin by reviewing the mark-sweep algorithm and
related work in this context. Then, we present the mark-split al-
gorithm in detail (Section 3). We discuss implementation aspects,
variants and optimizations in Section 4. An analysis of the time and
space complexity of various garbage collection algorithms, includ-
ing mark-split, is given in Section 5, followed by a brief description
of possible adaptive schemes (Section 6). The paper ends with a de-
tailed performance evaluation (Section 7) and concluding remarks.

proc mark sweep gc() ≡
foreach root ∈ rootset do mark (∗root)
sweep()

proc mark (object) ≡
if marked (object) = false →

marked (object) := true
foreach pointer in object do

mark (∗pointer)

Figure 1. The mark-sweep algorithm and its mark phase in detail.

2. Mark-Sweep Collection
2.1 The basic algorithm

In its traditional form, mark-sweep collection is done in two sepa-
rate phases. The first phase, called the mark phase, starts from a set
of roots and marks all reachable objects using an algorithm similar
to the one shown in Figure 1. This phase takes time proportional to
the size of live data in the heap. The second phase, called the sweep
phase, reclaims memory occupied by unreachable objects. Recla-
mation is traditionally done by visiting each object in the heap, ex-
amining its marked status, and reclaiming the memory occupied by
the object if the object is not marked. Marked objects are unmarked
in the process, in preparation for the next collection. Memory for
reclaimed objects is placed in a free list, which is subsequently used
by the allocator. Sometimes many free lists are built, one per object
size, which then makes allocation a very fast operation; essentially
of constant cost. The sweep phase of the algorithm takes time pro-
portional to the size of the entire heap, since every object in the
heap must be visited.

When the memory occupied by live objects is a significant por-
tion of the size of the heap, the cost of the sweep phase is asymp-
totically similar to that of the mark phase. In practice, marking time
dominates in this case, often significantly, since modern hardware
is optimized for the sequential memory scan that the sweep phase
performs. However, when the size of the live data set is only a small
fraction of the heap size, sweep time dominates. In big heaps, the
time difference can also be big.

2.2 Variants and optimizations of mark-sweep

The algorithm we show in Figure 1 is recursive, but this is only
for simplicity of presentation. In practice, marking is implemented
using a non-recursive procedure where the stack of pointers known
to be live (the mark stack) is managed explicitly. Sometimes, a
technique known as pointer reversal or one of its variants is used.
Some other memory managers, for example the one described by
Boehm [5], use separate memory areas for storing objects with
and without pointers and employ mark-sweep only for memory
areas containing objects with pointers. In the same paper, it is also
noticed that, due to cache effects, a significant fraction (roughly one
third) of the mark time is spent executing the load instruction(s) that
retrieve memory of objects that have been placed on the mark stack.
To improve cache performance, Boehm suggests a prefetch on grey
optimization [5], i.e. prefetching objects when these are placed by
the collector on the mark stack.

All these techniques affect the mark phase of mark-sweep. They
are orthogonal to the topic of this paper and do not change the com-
plexity of the mark-sweep algorithm. Moreover, they are immedi-
ately applicable to mark-split collection too. But there also exist
techniques that affect the sweep phase of mark-sweep.

Mark-sweep using a separate bitmap This technique is folklore
but is described nicely in a paper by Dimpsey et al. [8]. In languages
where pointers only point to the beginning of each object, one bit
per object suffices for marking. Then, if the mark bits are stored

in a separate bitmap table, the size of this table can be inversely
proportional to the size of the smallest object and can often be
held in main memory. More importantly, the sweep phase often
examines only the bitmap (i.e. not the heap) and can examine it
many bits at a time. Although this technique is often quite effective,
it lowers only the constant factor of the sweep phase cost, not its
asymptotic complexity.

Parallel sweep and mark during sweep The sweep phase can
be easily parallelized by horizontally partitioning the memory and
running multiple sweep phases, one per partition, in parallel. Also
in a parallel setting, Quinnec et al. [11] have suggested a technique
to reserve some memory for allocation and perform the sweep
phase of one collection in parallel with the mark phase of the
next collection. Again, although effective in their setting, these
techniques do not affect the complexity of the sweep phase.

Treadmill Baker proposed the treadmill [2], a collector based on
mark-sweep where the sweep phase only has to update a few point-
ers to doubly linked lists of objects. The sweep phase of the tread-
mill has constant time complexity. However, the technique heavily
relies on the fact that all objects have the same size. Attempts to
extend the treadmill to size-segregated storage have resulted in al-
gorithms of complexity linear in the size of the heap and have not
enjoyed much success in practice.

Selective sweeping Chung et al. developed a technique, called se-
lective sweeping [7], which performs well when the heap is nearly
empty. The technique works as follows. During the mark phase,
the addresses of the live data are recorded in an auxiliary memory
area outside the heap. Mark bits are used to prevent multiple in-
sertions and this area has size proportional (and comparable) to the
size of the live data set. Its contents are then sorted and guide the
subsequent sweep phase to reclaim all free areas in time which is
proportional to the size of the live data set.

Lazy sweeping Back in 1982, Hughes suggested that the sweep
phase can be deferred until the allocator requests more memory and
performed lazily (i.e., in chunks) at that time [9]. The initial motiva-
tion for doing so was to reduce garbage collection pause times and
thereby obtain a semi-incremental version of mark-sweep. Since
then many other researchers, including Zorn [12] and Boehm [5],
have suggested variants of lazy sweeping in order to improve pag-
ing and/or cache performance of the collector. The lazy sweep-
ing technique improves performance compared with mark-sweep
by exploiting the fact that the allocator will find the free space in
memory and in today’s machines most probably in the cache.

To make the case for lazy sweeping stronger, Boehm has argued
that the comparison of asymptotic complexity between collection
algorithms should also take allocation into account [4]. Under this
prism, all garbage collection algorithms have complexity propor-
tional to the size of the heap. With lazy sweeping in particular, the
cost of the sweep phase is reduced to effectively zero, since a cost
similar to the cost of the sweep phase is paid by the allocator.1

In this paper we will stick to the more traditional view of
garbage collection complexity; that in which the cost of alloca-
tion is not taken into account and the sweep phase dominates the
complexity of mark-sweep collection. We will not rely on laziness,
but will completely eliminate the sweep phase with the mark-split
garbage collection algorithm described in the next section.

After presenting the algorithm, we will analyze the complexity
of different garbage collection algorithms and discuss the advan-
tages and disadvantages of mark-split compared with selective and
lazy sweeping in detail.

1 This complexity argument assumes that objects are initialized.

One Free Interval Two Free Intervals Three Free Intervals Two Free IntervalsThree Free Intervals

a) The Heap initially
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

b) Marking splits a free interval
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

d) An interval is reduced e) An interval is removedc) Another interval split

Figure 2. Illustration of the mark-split collection algorithm.

proc mark split gc() ≡
new interval (heap start , heap end)
foreach root ∈ rootset do mark (∗root)

proc mark (object) ≡
if marked (object) = false →

marked (object) := true
split(find interval (&object), object)
foreach pointer in object do

mark (∗pointer)

Figure 3. The basic mark-split algorithm and its mark phase.

3. Mark-Split Collection
Let us initially assume that the heap to be collected is contiguous.
This is by no means a requirement, but it simplifies presentation.

3.1 The idea

If we are to do away with the sweep phase, we must somehow build
the list of free memory areas during marking. We do this by turning
the view of a mark-sweep collector’s work around.

Instead of first marking live objects and then sweeping the
heap to find free areas, we optimistically assume that the
entire heap will be free after collection and we then let the
mark phase repair the free list by rescuing the memory of
live objects.

By rescue memory for live objects we mean “make sure that the
memory interval where this object resides is taken off the free list”.

Since we rescue heap intervals of live objects, it is natural to
represent the free memory also as intervals. We will refer to the
latter as the set of free intervals.

Figure 2 shows a mark-split collection in action. The collection
starts with only one free interval that spans the entire heap; see
Figure 2(a). Mark-split collection then proceeds with marking live
objects, as in mark-sweep. During marking, rescuing a live object
often splits a free interval into two; hence the name of the algo-
rithm. This is shown in Figures 2(b) and 2(c). However, notice that
it is also possible that a free interval is reduced in size (Figure 2(d))
or that an interval is removed from the set (Figure 2(e)).

When marking is finished, the intervals left are the ones that
are actually free. The set of free intervals can directly be used for
allocation at this point. No sweep is required.

3.2 The algorithm

Figures 3 and 4 show the actual algorithm. The notation &object
has its familiar C meaning. We assume that there is a way to get the
size of an object and denote this by size(object).

The free intervals are stored in a global data structure, not shown
in the code. Each interval is a record with two fields: start and end .
Given the address of an object, the auxiliary procedure find interval
returns the free interval containing that address.

Mark-split collection starts by calling the auxiliary procedure
new interval. This creates a new interval that spans the entire heap.
We then proceed to the mark phase. Notice the similarities in the

proc split(interval , object) ≡
objectEnd := &object + size(object)
keepLeft := keep interval (&object − interval .start)
keepRight := keep interval (interval .end − objectEnd)
if keepLeft ∧ keepRight →

new interval (objectEnd , interval .end) // Case 1
interval .end := &object

else if keepLeft →
interval .end := &object // Case 2

else if keepRight →
interval .start := objectEnd // Case 3

else remove interval (interval) // Case 4

funct keep interval(size) ≡
return size ≥ T // T is a threshold

Figure 4. The procedure that splits an interval.

code of Figures 3 and 1. The only differences are that there is
no sweep phase and that the split procedure is called for each
unmarked object we find, in order to update the free intervals.

The split procedure (Figure 4) splits an interval into two, one
at the left and one at the right of the live object. The left interval
ranges from the start of the original interval to the start of the
object. The right interval ranges from the end of the object to the
end of the interval which is split. At this point we have to decide
whether to keep these intervals or not and this is determined by the
keep interval Boolean function. We then have the following cases:

Case 1 Both intervals will be kept. This means we have to insert a
new interval into the set. The original interval is updated to the
values of the left interval and the new interval which is inserted
is the right interval.

Case 2 The left interval is the only one kept. The end value of the
original interval is updated with that of the left interval.

Case 3 The right interval is the only one kept. The start value of
the original interval is updated with that of the right interval.

Case 4 None of the two intervals is kept. The original interval is
removed from the set.

In Figure 4, the condition for keeping an interval is that its size is
greater or equal to some threshold T , which is set globally. One
possible value for this threshold is 1, in which case all intervals are
kept. A more reasonable alternative is to set T equal to the size
of the smallest allocatable object. Yet another is to set T equal to
the smallest size of memory that a mark-sweep collector keeps. We
note that T can have a big impact on the cost of mark-split as it
determines the number of elements in the set of free intervals. More
on this below.

3.3 The free intervals data structure

The cost of mark-split collection depends highly on the choice of
data structure used to store the set of free intervals.

The most frequent operations on this data structure are locating
existing intervals and inserting new ones. These two operations,
and locating intervals in particular, constitute the bulk of the cost

for the mark-split algorithm. For decent performance, it is essential
that the find interval operation has sub-linear — if not constant
— cost. Also, it is desirable that the allocator can use the free
intervals data structure directly — or at least without requiring a
costly translation — after collection is finished. Data structures
with such properties are for example balanced search trees, splay
trees, or skip lists.

Note that, unless we reserve space in the header of the objects,
it is not possible to store the information about free intervals in the
heap cells during mark-split collection. In a mark-sweep collector
this is possible, but only because the sweep phase starts after the
marking is finished, and at that time we know that the objects we
overwrite with the free list contain garbage. In the mark-split algo-
rithm this is not the case. During marking, we store intervals for
memory areas that might eventually turn out to be live. Therefore,
we can not overwrite the data in the heap and the set of free inter-
vals must be stored in a separate memory area.

3.4 The good cases

The absolute best case for mark-split occurs when the heap contains
no live data. More generally, mark-split performs well when the
size of the live data set is relatively small compared to the size
of the heap. However, notice that another very good case is when
the live objects form a small number of big contiguous chunks
as in Figure 5. If marking visits live objects in such a way that
the size of the free intervals set remains small, the performance
of mark-split is not significantly different than that of the mark
phase of a mark-sweep collector. Since the sweep phase is avoided,
mark-split’s performance is better than mark-sweep’s.

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

1 2 3 4 v(L)

Figure 5. A very good case for mark-split: live data forms one big
chunk and marking is consecutive (as shown by the numbers).

3.5 The worst case

Assume that the threshold T is chosen equal to the size of the small-
est allocatable object. Then performance-wise, the worst case for
mark-split occurs when the entire heap is filled with the objects of
size T and marking creates lots of holes, even if these are created
only temporarily. For each live object, we need to find the corre-
sponding interval in the set and either split it, reduce the size of it,
or remove it. If there are I free intervals and we use a binary search
tree for representing them, locating an interval is a log I operation.
Notice however that I will never grow larger than the number of
objects that fit in half the heap. This is shown in Figure 6. The live
objects which have been marked occupy precisely half the heap.
Moreover, each of them is located exactly one object apart. The
number of free intervals I reaches its maximum value at this point.
If, at this point, another live object is found, the remove interval
procedure will be called and the set of free intervals will decrease
in size.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

Figure 6. Worst case in space need for storing the free intervals.

4. Implementation Aspects of Mark-Split
We have implemented the mark-split algorithm in the runtime sys-
tem of BEA JRockit (thereafter abbreviated as JRockit). Perfor-

mance comparisons amongst commercial Java implementations,
for example those shown on the SPEC benchmark web pages, show
that JRockit is one of the systems with the best performance.

JRockit offers a selection of garbage collection strategies tai-
lored to different types of applications and environments [3]. In
its default setting, JRockit uses a two-generational collector. The
young generation offers a choice between a single- and a multi-
threaded copying collector. If desired, the young generation can be
turned off which makes the collector non-generational and does not
use copying. Since our intention is to directly compare mark-split
with mark-sweep, we turned off the young generation. The old gen-
eration (and the non-generational collector) uses a mark-sweep col-
lector which is available in parallel, concurrent, and so called de-
terministic (i.e. time-limited) flavors.

The mark-sweep collector has existed for quite some time in
JRockit and its implementation has been quite fine-tuned. For in-
stance, the runtime system stores the mark bits for objects on a
bitmap table separated from the objects. This allows the sweep
phase both to benefit from cache effects and to be faster by examin-
ing a whole word at a time and compare it directly with zero. In fact,
even if a single bit is set, the entire word is considered live and the
corresponding space for objects is simply discarded (i.e., not used
for allocation). This means that free memory chunks of size up to
62 words may be discarded by the mark-sweep collector. Further-
more, to avoid the cost of the heap lock which is a major bottleneck
in multi-threaded Java applications, thread local heaps (TLHs) [8]
of size 2 KB are used for allocation. Consequently, JRockit does
not store any areas smaller than 2 KB in the free list because this
is the minimum free area size it has any use for. This in turn means
that a single live bit in the middle of a 4 KB block of otherwise free
memory can invalidate the entire block. In the mark-sweep collec-
tor, all this is done in order to save sweep time. The mark-split
collector on the other hand can easily consider this space as free,
which means that it can recover more space than the mark-sweep
collector in most collections.

4.1 Our current implementation

For simplicity, we have presented the mark-split algorithm assum-
ing that the heap to be collected is contiguous. If the heap consists
of n different memory areas, the set of free intervals can be built to
contain one interval per memory area (n intervals) at the start of the
collection, instead of one interval for the entire heap. This means
there will be a small setup cost proportional to the number of con-
tiguous areas that are collected. In JRockit, the holes between heap
areas are considered as live objects and marked as such in the mark
phase to exclude the areas from the free list. This means that we did
not have to worry about holes in the heap in our implementation.

The free intervals are stored in a general balanced search tree.
We used the AA tree [1] in our implementation. Each tree node oc-
cupies five words: two for the interval’s start and end address, two
for the node’s children, and one for the node’s level (its height in the
tree).2 To avoid breaking any implicit assumptions of JRockit, we
chose to use the same limit (2 KB) as the mark-sweep collector as
threshold for keeping an interval in the tree. In the algorithm, this is
done by setting T to 2 KB. The implementation of the routines that
manage the interval tree (in C) was straightforward, but for making
sure to implement them without recursion. Everywhere an object
is marked as live we call the function that updates the free interval
tree. Other than that, the marking code is completely unchanged.

2 If we controlled the addresses, each node could occupy four rather than
five words; for example, the level fits in a byte and could be squeezed in
some other word. However, since the size of the tree is small, we saw little
incentive to resort to such tricks in the current implementation.

We wanted to implement the mark-split algorithm in JRockit
without changing any parts of the system outside of the actual col-
lector. The free interval tree is therefore translated after the mark
phase into the regular in-heap linked list that JRockit normally uses
for allocation. This translation has negligible cost; see Section 7.1.
In principle, it can be removed completely and allocation can di-
rectly use the free interval tree instead of the linked list. The perfor-
mance of allocation will remain unaffected. Apart from the actual
implementation of the algorithm (about 600 lines of C), the only
change we made to JRockit code was to add a call to the split pro-
cedure in the places where objects are marked (three places), add
some initialization in the start of a garbage collection, and comment
out the code for the sweep phase.

4.2 Some possible optimizations

When the size of the free interval set remains small, mark-split per-
forms very well. Therefore, mark-split can benefit from optimiza-
tions which manage to keep this size as small as possible during
collection. In effect, such optimizations need to control the order
of marking, which in turn means that most probably they have to
rely on profiling to achieve good results. Some additional optimiza-
tions of mark-split’s implementation are described below. The last
one has been implemented but, since it is not tuned yet, we disabled
it during the performance evaluation.

Storing the free intervals in-heap In languages where objects are
reasonably large, as for example in Java, a few header words per
object can be reserved for maintaining the free interval structure
inside the heap. Doing so, is desirable for improving cache perfor-
mance. The heap objects need to be scanned to find live pointers,
and the free intervals data structure needs to be modified when a
live object is found. Keeping the object and the free intervals in the
same memory area will most likely decrease memory traffic. How-
ever, this is purely an optimization for speed. Considering the small
memory overhead of storing the free intervals in our current imple-
mentation, adding header words to every object in the heap would
most likely require more memory.

Storing mark bits in the objects In a mark-sweep collector, keep-
ing the mark bits on a separate bitmap typically improves the per-
formance of the sweep phase. But since mark-split removes the
sweep phase, the argument for keeping mark bits on the side is not
valid anymore. Keeping mark bits together with the objects may
improve cache performance.

Maintaining a free interval cache To lower the cost of the
find interval operation, especially in the case when the same free
interval is repeatedly trimmed in size, a free interval cache could
be used. The cache could store references to the last n intervals
that have been updated. When a new live object is found, we look
to find the interval in the cache before traversing the set of free in-
tervals. For objects such as lists, where a number of linked objects
are allocated directly after each other on the heap, a cache like this
can significantly improve performance.

4.3 Generational, concurrent, and parallel variants

A generational variant of the mark-split algorithm is straightfor-
ward. In fact, since most objects tend to die young, it makes sense
to use mark-split in the young generation and benefit from the fact
that mark-split’s complexity is proportional to the size of the live
data set, not that of the heap which is collected. On the other hand,
the benefit may be offset by the fact that the nursery is typically
small in size.

In the beginning of each mark-split collection, the entire heap is
considered free. Any remainder of the free list that the mutator uses
for allocation is forgotten (i.e., it is automatically included in the

single free interval which spans the entire heap). This approach is
normally used by stop-the-world collectors. Many concurrent and
on-the-fly collectors however keep the old free list live to allow the
mutator to allocate in it during the collection. The same technique
can easily be used with the mark-split algorithm as described be-
low.

When mark-split is used in a concurrent setting, the old free
list is not forgotten and the mutator is allowed to allocate in it
during the collection. In this case, the mark-split collector can still
consider the whole heap as free in the beginning of the collection
provided it ensures that objects allocated during the collection are
not considered free at the end of the collection. This can be done in
several different ways. For instance, all objects allocated during the
collection could be pushed on the mark stack or the allocator could
call the split procedure for all allocated objects to remove their
memory from the free intervals. Both actions would effectively act
as a write barrier for the allocator.

If the allocator calls split during a collection and this call results
in a modification of a free interval, a lock on the interval would be
required to avoid synchronization problems with the collector in a
concurrent setting. If this technique incurs too much overhead, ei-
ther on allocation or on accessing the free intervals data structure,
one could instead remember all objects allocated during the collec-
tion and mark them as live as part of the final stage of the collector.
In this case the split is performed by the collector and synchroniza-
tion is only needed at the end to make sure that no new objects are
allocated while the free intervals data structure is made up-to-date.

Several different ways of parallelizing mark-split are possible.
In the most straightforward of them, all marker threads modify the
same tree of free intervals and some form of (hierarchical tree)
locking is used to prevent concurrent modifications made by split .
Note that locking is not necessarily required for concurrent calls
to find interval . If the free interval data structure becomes a point
of contention, another possible parallelization scheme is to let each
marker thread maintain its own set of free intervals (all starting
with an interval which represents the entire heap as free) and merge
these trees when the collection is finished, thereby creating the
final free list. Finally, if garbage collection is parallelized using a
segmented heap, where each marker thread only collects objects
residing in its own heap region, the mark-split collector can use
one set of free intervals per marker thread. In this case, the final
merging is straightforward. Evaluating the performance of different
parallelization schemes of mark-split is future work.

5. Abstract Performance Comparison
We first analyze the time complexity and amount of auxiliary space
that different garbage collection algorithms require. We then try to
give some more insight and compare mark-split against variants of
mark-sweep.

5.1 Complexity Analysis

Refer to Table 1. Its first row should be self-explanatory. Copying
has O(L) time complexity, where L is the size of live data. If
we know this size in advance or allocate the to-space on demand,
copying needs additional space of size L in the best and H in the
worst case (when all of the heap is live).

Mark-sweep needs O(L) time for its mark phase and O(H)
for its sweep phase.3 It requires additional space for the bitmap.
All objects, dead or alive, need a mark bit. We denote the size of
the bitmap by M . If one bit per object suffices, then in the worst
case M is bounded by H/(wo). If one bit per word is needed, then
M = H/w as shown on the right of Table 1. Lazy sweeping has
the same time and space complexity as mark-sweep collection.

3 We slightly abuse notation and show the costs of each phase separately.

Auxiliary space
GC method Time Best case Worst case
Copying O(L) L H

Mark-sweep O(L) + O(H) M M

Selective sweeping O(L) + O(L log L) + O(L) M + ν(L) M + ν(H)

Mark-split O(L log I) M + k M + k H

2o

H: Size of heap to be collected
L: Size of the live data set
I: Number of free intervals
w: Number of bits in a machine word
o: Size of the smallest allocatable object

M : Size of mark bit area (e.g., M = H

w
)

k: Size of each free interval tree node

Table 1. Time and space characteristics of different garbage collection algorithms.

Selective sweeping [7] has three separate phases: a mark phase
with time complexity O(L), a phase of complexity O(L log L)
where the addresses of all live objects are sorted, and a selective
sweep phase with time complexity O(L).4 Space-wise, it requires
auxiliary space for the mark bits and space for the addresses of
all live objects. We use the notation ν(L) to denote the number
of objects in L, and similarly for H . The space requirements of
selective sweeping are not negligible.

Characterizing the time complexity of mark-split is a bit in-
volved. The problem is that mark-split depends on the number of
free intervals, I , not only on L. I can be expressed in terms of L
and H as follows:

I is bounded by

(

ν(L) + 1 if L < H

2

H

2o
if L ≥ H

2

In words: if less than half the heap is live (L < H/2), I is bounded
by the number of live objects plus one; otherwise I is at most the
number of objects that fit in half the heap. To see the latter, observe
the worst case shown in Figure 6. When using a balanced search
tree, each marking incurs an additional cost of at most log I . Thus,
the time complexity of mark-split is O(L log I).

The auxiliary space that mark-split requires is space for the
mark bits and space for the free interval tree. If each free node has
size k the space required for the latter is kI . In the best case, only
one interval is ever created. In the worst case, I is equal to H/(2o).
Both values very unlikely to occur in practice.

5.2 Comparison between variants of mark-sweep

Mark-split vs. selective sweeping Compared to selective sweep-
ing [7], which needs to record all heap addresses containing live ob-
jects, mark-split requires significantly less auxiliary space. In fact,
there is even a complexity difference between the two algorithms.
Consider the case shown in Figure 5, which is not so uncommon
in practice. For example, it may correspond to a list whose ele-
ments are arranged in sequence. For this case, selective sweeping
will need additional space of size ν(L), while mark-split only will
need constant space, assuming that live cells are visited in a consec-
utive order. In fact, even in cases where marking does not happen
consecutively, the space that mark-split needs to represent the free
interval tree is typically very small — especially if the T thresh-
old (the minimum size of intervals to keep) is chosen wisely. The
performance numbers of Section 7 support this claim.

Selective sweeping chooses to pay a non-negligible space cost
in order to save time during marking. In selective sweeping, the
addresses of live objects are recorded in an array and, once marking
is finished, this array is sorted. Effectively, this pass constructs the
heap intervals which contain live data. Mark-split eagerly maintains
these intervals.

To see the similarities and differences between mark-split and
selective sweeping clearly, let us consider the dual version of

4 In languages where pointers only point to the beginning of objects, the
complexity of the last two phases of selective sweeping is O(Λ log Λ) and
O(Λ) respectively, where Λ = ν(L).

mark-split, called mark-coalesce. The mark-coalesce algorithm
views the heap as a set of occupied rather than free intervals. Col-
lection starts with the empty set of occupied intervals. Marking
makes intervals occupied and coalesces them with their neighbors
as necessary. In this way, the mark-coalesce algorithm ends up do-
ing the same amount of work as mark-split, with the only exception
that at the end of the collection an extra pass (of complexity O(L))
is needed to construct the free list, which the allocator needs. By
avoiding this pass, the mark-split algorithm is slightly faster than
mark-coalesce. Also, we think that mark-split is conceptually more
appealing than its dual. Notice however that mark-coalesce can be
seen as a variant of selective sweeping that eagerly maintains live
interval information in a compact representation, instead of being
lazy and postponing this compaction till the end of the mark phase.

Mark-split vs. lazy sweeping As mentioned in Section 2, lazy
sweeping has been suggested as a method to improve the cache per-
formance of a mark-sweep collector and provide a “pay-as-you-go”
mechanism for sweeping the heap which is collected. First, notice
that lazy sweeping does not affect the complexity of mark-sweep;
the cost of the sweep phase is paid in full no matter how it is split
in installments. What lazy sweeping does affect is the cache per-
formance of a mark-sweep collector. Indeed, it is plain to see that
sweeping the entire heap at the end of each collection can be detri-
mental to the application’s cache performance. Sweeping the heap
in smaller chunks, when memory is requested by the allocator, is of
course preferable.

Although we do not provide experimental evidence for the fol-
lowing claim, we want to argue that, at least in principle, mark-split
has better cache performance than lazy sweeping. Mark-split con-
structs the free list without any sweeping. At the end of the collec-
tion, whenever a new memory chunk is requested by the allocator,
this chunk is readily available without touching any other mem-
ory. In contrast, lazy sweeping will sweep and touch some non-free
memory, thereby affecting cache performance of the mutator, most
probably to the worse. The cache advantage of lazy sweeping com-
pared with a plain mark-sweep collector is based on the fact that
a cache line is typically used shortly after is it swept. Thus, lazy
sweeping often avoids one of a total of possibly two cache misses
(one during sweeping, one during use) of a mark-sweep collector.
With mark-split, the first cache miss never happens.

A final note Despite these properties, the time complexity of
mark-split is cause for concern. The problem is that both phases
of mark-sweep— and its mark phase in particular — have a really
small constant. So, when (L log I) > (L + H), it is unlikely that
a mark-split collector will manage to beat mark-sweep, especially
as L approaches H . In such cases, an adaptive garbage collection
scheme might be called for. In the next section, we describe such
schemes.

6. Adaptive Schemes
The basic idea of all adaptive schemes is simple: optimistically
start with a mark-split collection and if it is detected that the cost
will be too high, simply revert to a mark-sweep collection. First of

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(a) compress

0

1

2

3

4

5

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(b) jess

0

1

2

3

4

5

6

7

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(c) db

0

5

10

15

20

25

30

35

40

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(d) javac

0

4

8

12

16

20

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(e) mtrt

0,0

0,5

1,0

1,5

2,0

2,5

3,0

64M 128M 256M 512M 1G 2G

T
o

ta
l G

C
 t

im
e

(s
)

mark-sweep

mark-split

(f) jack

Figure 7. Total garbage collection times for mark-sweep and mark-split when varying the size of available heap from 64M to 2G.

all, notice that switching between the two algorithms on the fly is
straightforward and comes at essentially no cost. This is because
the mark-split collector performs all the work of the mark phase of
a mark-sweep collector. If a switch takes place, we can continue
with the mark phase until its completion and then run the sweep
phase as if mark-split never occurred.

The main difference between alternative adaptive schemes is
how to detect that the cost of mark-split collection will be high.
The ways to do this are of course related to the additional costs of
performing the mark phase of mark-split rather than the mark and
the sweep phase of mark-sweep.

The major cost of the mark-split collector is due to locating free
intervals. One easy way of limiting this cost is to put a limit on the
maximum size of the data structure. For example, we can put a limit
of 42 KB or of not more than 17% of the heap. Notice that besides
serving as an adaptive scheme, this also provides a mechanism to
put a limit on the memory overhead of a mark-split collector.

Another way of limiting the cost of searching though the data
structure is to set some limit on the number of comparisons. This
does not limit the size of the free interval tree, but rather how deep
into the tree we are allowed go before giving up on mark-split.
To avoid giving up prematurely because a single search in the
data structure happens to go deeper than the allowed limit, we can
calculate the mean of the last n accesses to the data structure and
use that for comparison against the limit.

An even more adaptive scheme is that if several collections in a
row are aborted, the mark-split collector can choose to (exponen-
tially) back off for a number of collections and try again later to
see if the number of free intervals has become smaller. Many other
adaptive schemes are of course possible.

Naturally, no matter which adaptive scheme is adopted, no sin-
gle collection that starts with mark-split and reverts to mark-sweep
can ever be faster than the corresponding mark-sweep collection.
However, notice that an adaptive scheme consisting of a set of
complete mark-split collections and a set of collections that re-
verted to mark-sweep, can be faster than the corresponding set con-
sisting of mark-sweep collections only. This is because the com-
plete mark-split collections can finish significantly faster than their
mark-sweep counterparts. As we will see in the next section, a
mark-split collection being faster than a mark-sweep collection is
not uncommon.

7. Performance Evaluation
We ran all benchmarks on an four-processor Intel Xeon 2GHz with
hyper-threading, 512 KB of cache, and 8 GB of RAM, running
Linux version 2.6.9-5.ELsmp. However, during the performance
evaluation the garbage collector was run in single-threaded mode.
We had this machine completely at our disposal when running the
benchmarks, so we can reasonably expect that the time measure-
ments we report have little noise.

7.1 Performance on SPECjvm98

The first benchmark set we used were programs from SPECjvm98.
The JRockit system can be started with a command-line option that
specifies the size of the heap to use. When this heap is exhausted,
a garbage collection is triggered. Since none of these programs
allocates more than 300 MB during a single run, we run each
of them 50 times without restarting the system or enforcing any
garbage collection between runs of the same benchmark. Calls to
System.gc() that the driver program performs at the start and end
of each benchmark were not considered data for analysis. We run
the SPECjvm98 programs with the mark-sweep garbage collector
of JRockit using various different heap sizes, namely all power-of-
two sizes in the range 64 MB–2 GB, and recorded the live data set
sizes at the times of garbage collection. Their maximum values are
shown in Table 2. Using JRockit, the benchmarks exhibit maximum
live data set sizes ranging from approximately 4 MB to 46 MB. The
total amount of allocation is also shown.

Benchmark Max live data Total allocation
compress 6,433 KB 125 MB × 50
jess 6,336 KB 326 MB × 50
db 10,025 KB 87 MB × 50
javac 46,468 KB 288 MB × 50
mtrt 18,597 KB 180 MB × 50
jack 4,473 KB 292 MB × 50

Table 2. Size characteristics of the SPECjvm98 benchmarks.

Total GC time performance We compared the performance of
the mark-sweep and the mark-split collector using the set of heap
sizes mentioned above. Total garbage collection times for these
benchmarks are shown in the graphs of Figure 7. At 64 MB,
which is the smallest heap size, the mark-sweep collector has better

0

10

20

30

40

50

60

70

80

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(a) compress

0
10
20
30
40
50
60
70
80
90

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(b) jess

0

20

40

60

80

100

120

140

160

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(c) db

0
10
20
30
40
50
60
70
80
90

100

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(d) javac

0

20

40

60

80

100

120

140

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(e) mtrt

0

10

20

30

40

50

60

70

64M 128M 256M 512M 1G 2G

A
ve

ra
g

e
G

C
 t

im
e

(m
s) mark-sweep

mark-split

(f) jack

Figure 8. Average garbage collection times for mark-sweep and mark-split when varying the size of available heap from 64M to 2G.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%

compress jess db javac mtrt jack

209%

(a) On a heap of size 64 MB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%

mark sweep mark-split

compress jess db javac mtrt jack

(b) On a heap of size 128 MB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%

compress jess db javac mtrt jack

(c) On a heap of size 256 MB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%

compress jess db javac mtrt jack

(d) On a heap of size 512 MB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

compress jess db javac mtrt jack

(e) On a heap of size 1 GB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

compress jess db javac mtrt jack

(f) On a heap of size 2 GB

Figure 9. Normalized total garbage collection times for mark-sweep and mark-split collection with different heap sizes.

0

10

20

30

40

50

60

70

80

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(a) compress

0
10
20
30
40
50
60
70
80
90

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(b) jess

0

20

40

60

80

100

120

140

160

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(c) db

0

50

100

150

200

250

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(d) javac

0
20
40
60
80

100
120
140
160
180

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(e) mtrt

0

10

20

30

40

50

60

70

80

64M 128M 256M 512M 1G 2G

W
o

rs
t

G
C

 t
im

e
(m

s)

mark-sweep

mark-split

(f) jack

Figure 10. Worst garbage collection times for mark-sweep and mark-split when varying the size of available heap from 64M to 2G.

performance than mark-split in all but one benchmark (compress).
Other than that, all graphs show a similar picture. Naturally, as
the size of the available heap increases, fewer garbage collections
occur. As a result, the total time spent in GC drops; javac is the only
exception. Also, notice that as the initial heap size increases, for
each benchmark there comes a point where mark-split outperforms
mark-sweep. The explanation is simple: the sweep phase becomes
the bottleneck of the mark-sweep collector. The graph of javac in
particular (Figure 7(d)) shows the problem with mark-sweep quite
clearly.

Average garbage collection pauses show the performance differ-
ences between mark-sweep and mark-split collection as the heap
size increases more clearly; see Figure 8. One conclusion that
can be drawn from these graphs, is that a system that employs a
mark-split collector relieves the programmer from having to worry
about specifying a small rather than a big initial heap size solely for
the sake of the garbage collector.5 When the size of the live data set
is small or moderate in size, the mark-split collector is naturally im-
mune to bad performance solely due to the size of the heap which
is collected.

Overhead on marking We show a detailed breakdown of the time
spent in the different phases of the two algorithms in Figure 9. In
the figure, all times are shown normalized to the mark-sweep total
GC times. For mark-sweep, the sweep phase occupies a significant
portion of the time spent in garbage collection. When using a
heap size of 64MB, the sweep phase takes 4–40%. As the heap
grows, the percentage of time spent in the sweep phase increases.
At 2 GB, the sweep phase accounts for 48–93% of the total garbage
collection time. On the other hand, the overhead of maintaining live
intervals during marking is, in absolute terms, between 2–64% of
the total mark-sweep GC time; in relative terms, it adds 18–74%
cost to the mark phase. As the heap grows, paying this overhead to
avoid the cost of the sweep phase pays off.

Pause times As can be seen in Figure 10, the mark-split collector
has smaller worst garbage collection pauses than mark-sweep; db,
javac, and mtrt are the exceptions in small heap sizes. The remain-
ing three benchmarks (compress, jess, and jack) clearly show the
complexity difference between mark-sweep and mark-split.

5 Of course, a smaller heap size might be desirable for other reasons (e.g.,
to run many applications on the same platform or to improve cache perfor-
mance).

Space overhead due to the free interval tree A natural concern
for mark-split collection is the additional space required for the
maintenance of the tree of free intervals. Table 3 shows the number
of nodes of this tree, both the maximum during (second column)
and the maximum at the end of garbage collection (third column).

In our current implementation, each tree node occupies five
words. The next column of the table shows the space required for
storing these nodes as a percentage of the maximum size of the
live data set for the benchmark. As can be seen, the space overhead
for maintaining the tree of free intervals for these benchmarks is
extremely small; less than 1% of the live data set. In fact, this
additional space is so small that it can be considered practically
negligible. For example, the biggest of these trees, the one for the
javac benchmark, requires (7, 802 ∗ 5 ∗ 4) ≈ 153 KB on a 32-bit
machine. To put this number in perspective, assuming that each
mark bit is stored in a single bit, a heap of size 64 MB requires
512 KB of memory for storing the mark bits alone. If a copying
collector could possibly guess the size of the live data set and
allocate only that amount of memory for its to-space, it would
need 46,468 KB for this benchmark (cf. Table 2). In short, in the
worst case for these benchmarks, the free interval tree requires
roughly 1/4 the memory needed for the mark bits of a mark-sweep
collector, and only 1/303 of the additional space that a copying
collector would minimally require.

The last two columns of Table 3 show the total and average
number of comparisons performed during the extended mark phase
of mark-split; i.e. the number of tree nodes visited in order to lo-
cate the interval that marking possibly affects. The numbers are
taken from the collection that resulted in the largest tree during the
execution of each benchmark. Finally, in Figure 11 we show plots
for the total number of nodes in the tree and number of nodes ex-
amined while mark-split garbage collection takes place. Of course,
these plots are highly dependent on the order of marking, but they
confirm that in most cases the free interval tree grows monotoni-
cally in size — only mtrt shows some significant reduction — and
that in our implementation the tree is indeed balanced.

As mentioned, in our current implementation we linearize the
free interval tree at the end of the collection and translate it to
the in-heap representation of the free list that JRockit normally
uses. For these benchmarks, the cost of this translation is between
0.1% and 3.5% of the cost of mark-split collection and as such is
negligible.

Number of nodes Max tree size as Comparisons
Benchmark Max Final % of max live data Total Avg
compress 267 205 0.0811% 56k 7.1
jess 2,731 2,472 0.8419% 270k 10.2
db 207 186 0.0403% 45k 6.3
javac 7,802 7,561 0.3279% 456k 12.0
mtrt 509 275 0.0535% 1,320k 9.1
jack 1,953 1,928 0.2528% 199k 9.6

Table 3. Size characteristics of the free interval tree.

0

50

100

150

200

250

300 Size Comparisons

(a) compress

0,0k

0,5k

1,0k

1,5k

2,0k

2,5k

3,0k Size Comparisons

 0

(b) jess

0

50

100

150

200

250 Size Comparisons

(c) db

k

1k

2k

3k

4k

5k

6k

7k

8k

9k Size Comparisons

0

(d) javac

0

100

200

300

400

500

600 Size Comparisons

(e) mtrt

0,0k

0,5k

1,0k

1,5k

2,0k

2,5k Size Comparisons

 0

(f) jack

k

5k

10k

15k

20k

25k

30k

35k Size Comparisons

0

(g) SPECjbb2000

k

20k

40k

60k

80k

100k

120k Size Comparisons

 0

(h) SPECjbb2005

Figure 11. Number of nodes in the free interval tree and nodes examined by marking during mark-split collection (X-axis is time).

Sizes Num Number of Nodes Max tree size as % of Comparisons
Benchmark Heap Max live data GCs Max Max Final Heap Max live data Total Avg
SPECjbb2000 2 GB 329,740 KB 79 28,792 13,508 0.0126% 0.0800% 17,840k 14.1
SPECjbb2005 2 GB 879,080 KB 103 109,574 60,674 0.1020% 0.2434% 148,710k 16.4

Table 4. Characteristics of the two SPECjbb benchmarks.

7.2 Performance on SPECjbb

As mentioned, when the size of the live data set is relatively big
compared to the size of the heap, using mark-split is probably not a
good idea. Still, we wanted to see how bad its performance can be.
The SPECjbb benchmarks, and SPECjbb2005 in particular, are
designed to stress the garbage collector. Indeed, the size of their live
data set is big (cf. Table 4) and the mark phase heavily dominates
the sweep phase when using mark-sweep.

We ran the SPECjbb2000 benchmark using 8 warehouses and
the SPECjbb2005 using 16. Both benchmarks were run on a
2 GB heap. In this setting, SPECjbb2000 spends 17% of the total
garbage collection time in the sweep phase, while SPECjbb2005
spends only 4%. This means that the mark-split collector has ba-

sically no chance of improving performance in these benchmarks.
Still, its performance is only 31% worse than the mark-sweep col-
lector in SPECjbb2000, and 69% worse in SPECjbb2005.

We also tried an adaptive scheme that first tries mark-split in
all collections but when a tree size limit is reached the collec-
tion switches to the mark-sweep collector. The adaptive scheme
is slower than mark-sweep in these two benchmarks, but at least
it manages to keep the amount of damage under control. In
SPECjbb2005, all but two collections switch to the mark-sweep
collector using this scheme. The overall performance is only
7% worse than directly using the mark-sweep collector; see Fig-
ure 12. In SPECjbb2000, 12 out of a total of 79 collections use
mark-split and the rest dynamically switch to mark-sweep. The

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%
180%

mark-
sweep

mark-
split

adaptive
scheme

mark-
sweep

mark-
split

adaptive
scheme

mark-split

sweep

mark

SPECjbb2000 SPECjbb2005

Figure 12. Normalized collection times for SPECjbb versions.

adaptive scheme performs 10% worse than the mark-sweep col-
lector. It might not be noticeable in Figure 12, but compared to
the mark-sweep collector there is actually a 16% decrease in time
spent in the sweep phase and a 7% increase in mark time when us-
ing the adaptive scheme on this benchmark. This increase in mark
time is larger in SPECjbb2000 than in SPECjbb2005 because
in SPECjbb2000 the free interval tree grows at a slower pace,
and it takes quite a while before mark-split collections revert to
mark-sweep. To see this, contrast the y-axis scales and the rates of
increase in the size of the tree in Figures 11(g) and 11(h).

8. Concluding Remarks
We have proposed mark-split, a new non-moving garbage collec-
tion algorithm whose cost is proportional to the size of the live
data set. When the size of the live data set is small compared with
the size of the heap which is collected or when live data naturally
cluster together, the use of mark-split achieves better performance
than mark-sweep. As shown by our performance evaluation, this
improvement is often significant. In fact, because the two algo-
rithms have a difference in complexity, mark-split allows for an
arbitrarily large decrease in total garbage collection times simply
by performing the most natural action: increasing the heap size.
This is something which is not possible when using mark-sweep.

At the very least, mark-split is just another garbage collection
algorithm that improves performance in some situations. Indepen-
dently of the practical usefulness of the actual algorithm, the insight
that sweeping is unnecessary if one maintains information about
free intervals while marking also offers a different — and in our
opinion intriguing — way of looking at the problem of memory
management.

Acknowledgments
We thank Joakim Dahlstedt, Mattias Joelson, David Lindholm,
and Noora Peura of BEA Systems Stockholm Engineering AB
for letting us play with JRockit, for their help in conducting the
performance evaluation, and for their hospitality. We also thank the
anonymous reviewers of ISMM’06 for comments that have helped
us improve the presentation of our work.

References
[1] A. Andersson. General search trees made simple. In Proceedings of

the Third Workshop on Algorithms and Data Structures (WADS’93),
volume 709 of LNCS, pages 60–71. Springer-Verlag, Aug. 1993.

[2] H. G. Baker. The treadmill, real-time garbage collection without
motion sickness. SIGPLAN Notices, 27(3):66–70, Mar. 1992.

[3] BEA JRockit: Java for the enterprise. Technical White Paper (publicly
available), Dec. 2003.

[4] H.-J. Boehm. Mark-sweep vs. copying collection and asymptotic
complexity, 1995. Web page describing an IWMM’95 presentation.

[5] H.-J. Boehm. Reducing garbage collector cache misses. In
T. Hosking, editor, Proceedings of ISMM’2000: ACM SIGPLAN
International Symposium on Memory Management, pages 59–64,
New York, N.Y., Oct. 2000. ACM Press.

[6] C. J. Cheney. A nonrecursive list compacting algorithm. Communi-
cations of the ACM, 13(11):677–678, Nov. 1970.

[7] Y. C. Chung, S.-M. Moon, K. Ebcioĝlu, and D. Sahlin. Selective
sweeping. Software – Practice and Experience, 35(1):15–26, Jan.
2005.

[8] R. T. Dimpsey, R. Arora, and K. Kuiper. Java server performance: A
case study of building efficient, scalable Jvms. IBM Systems Journal,
39(1):151–174, 2000.

[9] R. J. M. Hughes. A semi-incremental garbage collection algorithm.
Software – Practice and Experience, 12(11):1081–1084, Nov. 1982.

[10] J. L. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, Part I. Communications of the ACM,
3(4):184–195, Apr. 1960.

[11] C. Queinnec, B. Beaudoing, and J.-P. Queille. Mark during sweep
rather than mark then sweep. In Proceedings of Parallel Architectures
and Languages Europe (PARLE’89), volume 365 of LNCS, pages
224–237, Berlin, Germany, June 1989. Springer-Verlag.

[12] B. Zorn. Comparing mark-and sweep and stop-and-copy garbage
collection. In Proceedings of the ACM Conference on LISP and
Functional Programming, pages 87–98, New York, NY, USA, June
1990. ACM Press.

