
Message Analysis for Concurrent Languages?

Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelmsson

Computing Science Department, Uppsala University, Sweden
{richardc,kostis,jesperw}@csd.uu.se

Abstract. We describe an analysis-driven storage allocation scheme for concur-
rent languages that use message passing with copying semantics. The basic prin-
ciple is that in such a language, data which is not part of any message does not
need to be allocated in a shared data area. This allows for deallocation of thread-
specific data without requiring global synchronization and often without even
triggering garbage collection. On the other hand, data that is part of a message
should preferably be allocated on a shared area, which allows for fast (O(1))
interprocess communication that does not require actual copying. In the context
of a dynamically typed, higher-order, concurrent functional language, we present
a static message analysis which guides the allocation. As shown by our perfor-
mance evaluation, conducted using an industrial-strength language implementa-
tion, the analysis is effective enough to discover most data which is to be used as
a message, and to allow the allocation scheme to combine the best performance
characteristics of both a process-centric and a shared-heap memory architecture.

1 Introduction

Many programming languages nowadays come with some form of built-in support
for concurrent processes (or threads). Depending on the concurrency model of the
language, interprocess communication takes place either through synchronized shared
structures (as e.g. in Java), using synchronous message passing on typed channels (as
e.g. in Concurrent ML), or using asynchronous message passing (as e.g. in ERLANG).
Most of these languages typically also require support for automatic memory man-
agement, usually implemented using a garbage collector. So far, research has largely
focused on the memory reclamation aspects of these concurrent systems. As a result,
by now, many different garbage collection techniques have been proposed and their
characteristics are well-known; see e.g. [15].

A less treated, albeit key issue in the design of a concurrent language implementa-
tion is that of memory allocation. It is clear that, regardless of the concurrency model
of the language, there exist several different ways of structuring the memory architec-
ture, each having its pros and cons. Perhaps surprisingly, till recently, there has not been
any in-depth investigation of the performance tradeoffs that are involved in the choice
between these alternative architectures. In [14], we provided the first detailed charac-
terization of the advantages and disadvantages of different memory architectures in a
language where communication occurs through message passing.

? Research supported in part by the ASTEC (Advanced Software Technology) competence cen-
ter with matching funds by Ericsson Development.

The reasons for focusing on this type of languages are both principled and prag-
matic. Pragmatic because we are involved in the development of a production-quality
system of this type, the Erlang/OTP system, which is heavily used as a platform for the
development of highly concurrent (thousands of processes) commercial applications.
Principled because, despite current common practice, we hold that concurrency through
(asynchronous) message passing with copying semantics is fundamentally superior to
concurrency through shared data structures. Considerably less locking is required, and
consequently the method has better performance and scales better. Furthermore, the
copying semantics makes distribution transparent.

Our contributions Our first contribution, which motivates our analysis, is in the area
of runtime system organization. Based on the pros and cons of different memory ar-
chitectures described in [14], we describe two different variants of a runtime system
architecture that has process-specific areas for allocation of local data, and a common
area for data that is shared between communicating processes (i.e., is part of some mes-
sage). In doing so, it allows interprocess communication to occur without actual copy-
ing, uses less overall space due to avoiding data replication, and allows for the frequent
process-local heap collections to take place without a need for global synchronization
of processes, reducing the level of system irresponsiveness due to garbage collection.

Our second and main contribution is to present in detail a static analysis, called mes-
sage analysis, whose aim is to discover which data is to be used as message, and which
can guide the allocation in such a runtime system architecture. Novel characteristics of
the analysis are that it does not rely on the presence of type information and does not
sacrifice precision when handling list types.

Finally, we have implemented these schemes in the context of an industrial-strength
implementation used for highly concurrent time-critical applications, and report on the
effectiveness of the analysis, the overhead it incurs on compilation times, and the per-
formance of the resulting system.

Summary of contents We begin by introducing ERLANG and reviewing our prior work
on heap architectures for concurrent languages. Section 3 goes into more detail about
implementation choices in the hybrid architecture. Section 4 describes the escape anal-
ysis and message analysis, and Sect. 5 explains how the information is used to rewrite
the program. Section 6 contains experimental results measuring both the effectiveness
of the analysis and the effect that the use of the analysis has on improving execution
performance. Finally, Sect. 7 discusses related work and Sect. 8 concludes.

2 Preliminaries & Prior Work

2.1 Erlang and Core Erlang

ERLANG [1] is a strict, dynamically typed functional programming language with sup-
port for concurrency, distribution, communication, fault-tolerance, on-the-fly code re-
placement, and automatic memory management. ERLANG was designed to ease the
programming of large soft real-time control systems like those commonly developed
in the telecommunications industry. It has so far been used quite successfully both by

Ericsson and other companies around the world to construct large (several hundred
thousand lines of code) commercial applications.

ERLANG’s basic data types are atoms (symbols), numbers (floats and arbitrary pre-
cision integers), and process identifiers; compound data types are lists and tuples. Pro-
grams consist of function definitions organized in modules. There is no destructive as-
signment of variables or data. Because recursion is the only means to express iteration
in ERLANG, tail call optimization is a required feature of ERLANG implementations.

Processes in ERLANG are extremely light-weight (lighter than OS threads), their
number in typical applications can be large (in some cases up to 50,000 processes on
a single node), and their memory requirements vary dynamically. ERLANG’s concur-
rency primitives – spawn, “!” (send), and receive – allow a process to spawn new
processes and communicate with other processes through asynchronous message pass-
ing. Any value can be sent as a message and processes may be located on any machine.
Each process has a mailbox, essentially a message queue, where all messages sent to
the process will arrive. Message selection from the mailbox is done by pattern match-
ing. In send operations, the receiver is specified by its process identifier, regardless of
where it is located, making distribution all but invisible. To support robust systems, a
process can register to receive a message if some other process terminates. ERLANG

provides mechanisms for allowing a process to timeout while waiting for messages and
a catch/throw-style exception mechanism for error handling.

ERLANG is often used in “five nines” high-availability (i.e., 99.999% of the time
available) systems, where down-time is required to be less than five minutes per year.
Such systems cannot be taken down, upgraded, and restarted when software patches and
upgrades arrive, since that would not respect the availability requirement. Consequently,
ERLANG systems support upgrading code while the system is running, a mechanism
known as dynamic code replacement.

Core Erlang [7, 6] is the official core language for ERLANG, developed to facil-
itate compilation, analysis, verification and semantics-preserving transformations of
ERLANG programs. When compiling a module, the compiler reduces the ERLANG code
to Core Erlang as an intermediate form on which static analyses and optimizations may
be performed before low level code is produced. While ERLANG has unusual and com-
plicated variable scoping rules, fixed-order evaluation, and only allows top-level func-
tion definitions, Core Erlang is similar to the untyped lambda calculus with let- and
letrec-bindings, and imposes no restrictions on the evaluation order of arguments.

2.2 Heap Architectures for Concurrent Languages using Message Passing

In [14] we examined three different runtime system architectures for concurrent lan-
guage implementations: One process-centric where each process allocates and man-
ages its private memory area and all messages have to be copied between processes,
one which is communal and all processes get to share the same heap, and finally we
proposed a hybrid runtime system architecture where each process has a private heap
for local data but where a shared heap is used for data sent as messages. Figure 1 depicts
memory areas of these architectures when three processes are currently in the system;
shaded areas show currently unused memory; the filled shapes and arrows in Fig. 1(c)
represent messages and pointers.

�����

����� �
	

�� � �

P1 P2 P3

P1 P2 P1 P2

P1 P2 P3

P1 P2 P1 P2

� �

� �

(a) Process-centric

P1 P2 P3

P1 P2 P1 P2

�����

����� ���

�������� �!
�� �� �

P1 P2 P3

P1 P2 P1 P2

" #

$ % & ' (
')

* # + % & ' (
')

(b) Communal

,�-�.

/10�23-�4

/6532�7�8:9
;<8�/=/623>�8

2�7�8:2

P1 P2 P3

? @

A @

B�@ CED F G B G H

538:2�,

P1 P2 P1 P2

(c) Hybrid architecture

Fig. 1. Different runtime system architectures for concurrent languages.

For each architecture, we discussed its pros and cons focusing on the architectural
impact on the speed of interprocess communication and garbage collection (GC). We
briefly review them below:

Process-centric. This is currently the default configuration of Erlang/OTP. Interpro-
cess communication requires copying of messages, thus is an O(n) operation where
n is the message size. Also, memory fragmentation is high. Pros are that the garbage
collection times and pauses are expected to be small (as the root set need only con-
sist of the stack of the process requiring collection), and upon termination of a
process, its allocated memory area can be reclaimed without GC. This property in
turn encourages the use of processes as a form of programmer-controlled regions:
a computation that requires a lot of auxiliary space can be performed in a separate
process that sends its result as a message to its consumer and then dies. This mem-
ory architecture has recently also been exploited in the context of Java; see [11].

Communal (shared heap). The biggest advantage is very fast (O(1)) interprocess
communication, simply consisting of passing a pointer to the receiving process, and
low memory requirements due to message sharing. Disadvantages include having
to consider the stacks of all processes as root set (expected higher GC latency) and
possibly poor cache performance due to processes’ data being interleaved on the
shared heap.

Hybrid. Tries to combine the advantages of the above two architectures: interprocess
communication is fast and GC latency for the frequent collections of the per-process
heaps is expected to be small. Also, this architecture allows for reclamation of data
of short-lived, memory-intensive processes to happen without GC, but simply by
attaching the process-local heap to a free list. However, to take advantage of this
architecture, the system should be able to distinguish between data that is process-
local and data which is to be shared and used as messages. This can be achieved
by user annotations on the source code, by dynamically monitoring the creation of
data as recently proposed in [11], or by a static analysis as we describe in Sect. 4.

Note that these runtime system architectures are applicable to all message-passing con-
current languages. They are generic: their advantages and disadvantages in no way
depend on characteristics of the ERLANG language or the current ERLANG implemen-
tation.

3 The Hybrid Architecture

A key point in the hybrid architecture is to be able to garbage collect the process-local
heaps individually and without looking at the shared heap. In a multi-threaded system
this allows collection of process-local heaps without any locking or synchronization.
If, on the other hand, pointers from the shared area to the local heaps are allowed,
these must then be traced so that what they point to is regarded as live during a local
collection. This could be achieved by a read or write barrier, which typically incurs a
relatively large overhead on the overall runtime. The alternative, which is our choice, is
to maintain as an invariant that there are no pointers from the shared area to the local
heaps, nor from one process-local heap to another; cf. Fig. 1(c).

There are two possible strategies for the implementation of allocation and message
passing in the hybrid architecture:

Local allocation of non-messages. Here, only data that is known to not be part of
a message may be allocated on the process-local heap, while all other data is al-
located on the shared heap. This gives O(1) process communication for processes
residing on the same node, since all possible messages are guaranteed to already be
in the shared area, but utilization of the local heaps depends on the ability to decide
through program analysis which data is definitely not shared. This approach is used
by [19]. Because it is not possible in general to determine what will become part of
a message, underapproximation is necessary. In the worst case, nothing is allocated
in the process-local heaps, and the behaviour of the hybrid architecture with this
allocation strategy reduces to that of the shared heap architecture.

Shared allocation of possible messages. In this case, data that is likely to be part
of a message is allocated speculatively on the shared heap, and all other data on the
process-local heaps. This requires that the message operands of all send-operations
are wrapped with a copy-on-demand operation, which verifies that the message
resides in the shared area, and otherwise copies the locally allocated parts to the
shared heap. If program analysis can determine that a message operand must al-
ready be on the shared heap, the copy operation can be statically eliminated. With-
out such analysis, the behaviour will be similar to the process-centric architecture,
except that data which is repeatedly passed as message from one process to an-
other will only be copied once. If the analysis overapproximates too much, most
of the data will be allocated on the shared heap, and we will not benefit from the
process-local heaps; on the contrary, we may introduce unnecessary copying.

Copying of messages. If the second strategy is used, as is the case in our implementa-
tion of the hybrid system, we must be prepared to copy (parts of) messages as necessary
to ensure the pointer directionality invariant. Since we do not know how much of a mes-
sage needs to be copied and how much already resides in the shared area, we can not

ensure that the space available on the shared heap will be sufficient before we begin to
copy data.

At the start of the copying, we only know the size of the topmost constructor of the
message. We allocate space in the message area for this constructor. Non pointer data
are simply copied to the allocated space, and all pointer fields are initialized to Nil. This
is necessary because the object might be scanned as part of a garbage collection before
all its children have been copied. The copying routine is then executed again for each
child. When space for a child has been allocated and initialized, the child will update the
corresponding pointer field of the parent, before proceeding to copy its own children.

If there is not enough memory on the shared heap for a constructor at some point,
the garbage collector is called on-the-fly to make room. If a copying garbage collector
is used, as is the case in our system, it will move those parts of the message that have
already been copied, including the parent constructor. Furthermore, in a global collec-
tion, both source and destination will be moved. Since garbage collection might occur
at any time, all local pointer variables have to be updated after a child has been copied.
To keep the pointers up to date, two stacks are used during message copying: one for
storing all destination pointers, and one for the source pointers. The source stack is
updated when the sending process is garbage collected (in a global collection), and the
destination stack is used as a root set (and is thus updated) in the collection of the shared
heap.

4 Message Analysis

To use the hybrid architecture without user annotations on what is to be allocated on the
local and shared heap respectively, program analysis is necessary. If data is allocated on
the shared heap by default, we need to single out the data which is guaranteed to not be
included in any message, so it can be allocated on the per-process heap. This amounts
to escape analysis of process-local data [4, 5, 8].

If data is by default allocated on the local heaps, we instead want to identify data
that is sure to be part of a message, so it can be directly allocated in the shared area in
order to avoid the copying operation when the message is eventually passed. We will
refer to this special case of escape analysis as message analysis. Note that since copying
will be performed if necessary whenever some part of a message could be residing on a
process-local heap, both under- and overapproximation of the set of run-time message
constructors is safe.

4.1 The analyzed language

Although our analyses have been implemented for the complete Core Erlang language,
for the purposes of this paper, the details of Core Erlang are unimportant. To keep
the exposition simple, we instead define a sufficiently powerful language of A-normal
forms [12], shown in Fig. 2, with the relevant semantics of the core language (strict,
higher-order, dynamically typed and without destructive updates), and with operators
for asynchronous send, blocking receive, and process spawning. We also make the sim-
plifying assumption that all primitive operations return atomic values and do not cause
escapement; however, our actual implementation does not rely on that assumption.

c ∈ Const Constants (atoms, integers, pids and nil)
x ∈ Var Variables
e ∈ Expr Expressions
l ∈ Label Labels, including xcall and xlambda
o ∈ Primops Primitive operations (==, >,is nil, is cons, is tuple, . . .)

v ::= c | x

e ::= v | (v1 v2)
l | if v then e1 else e2 | let x = b in e

b ::= v | (v1 v2)
l | (λx

′

.e
′)l | fix (λx

′

.e
′)l | v1:

l
v2 | {v1, . . . , vn}

l | hd v | tl v |

elementk v | v1! v2 | receive | spawn (v1 v2)
l | primop o(v1, ..., vn)

Fig. 2. A mini-Erlang language

Since the language is dynamically typed, the second argument of a list constructor
v1:v2 might not always be a list, but in typical ERLANG programs all lists are proper.
Tuple constructors are written {v1, . . . , vn}, for all n ≥ 1. Each constructor expression
in the program, as well as each call site and lambda expression, is given a unique label
l. All variables in the program are assumed to be uniquely named.

Recursion is introduced with the explicit fixpoint operator fix (λx′.e′)l. Operators
hd and tl select the first (head) and second (tail) element, respectively, of a list con-
structor. The operator elementk selects the k:th element of a tuple, if the tuple has at
least k elements.

The spawn operator starts evaluation of the application (v1v2) as a separate process,
then immediately continues returning a new unique process identifier (“pid”). When
evaluation of a process terminates, the final result is discarded. The send operator v1!v2

sends message v2 asynchronously to the process identified by pid v1, yielding v2 as re-
sult. Each process is assumed to have an unbounded queue where incoming messages
are stored until extracted. The receive operator extracts the oldest message from the
queue, or blocks if the queue is empty. This is a simple model of the concurrent seman-
tics of ERLANG.

4.2 General framework

The analyses we have this far implemented are first-order dataflow analyses, and are
best understood as extensions of Shivers’ closure analysis [18]. Indeed, we assume that
closure analysis has been done, so that:

– The label xcall represents all call sites external to the program, and the label xlambda
represents all possible external lambdas.

– There is a mapping calls: Label → P(Label) from each call site label (including
xcall) to the corresponding set of possible lambda expression labels (which may
include xlambda).

The domain V is defined as follows:

V0 = P(Label) × {〈〉,>}
Vi = Vi−1 ∪ P(Label) ×

⋃

n≥0
{〈v1, . . . , vn〉 | v1, . . . , vn ∈ Vi−1} for all i > 0

V =
⋃

i≥0
Vi

Let R∗ denote the reflexive and transitive closure of a relation R, and define v to
be the smallest relation on V such that:

(s1, w) vi (s2,>) if s1 ⊆ s2, for all i ≥ 0
(s1, 〈u1, . . . , un〉) vi (s2, 〈v1, . . . , vm〉)

if s1 ⊆ s2 ∧ n ≤ m ∧ ∀j ∈ [1, n] : uj vi−1 vj , for all i ≥ 0
v1 vi v2 if v1 vi−1 v2, for all i > 0

v=
⋃

i≥0
v∗

i

It is then easy to see that 〈V,v〉 is a complete lattice.
Intuitively, our abstract values represent sets of constructor trees, where each node

in a tree is annotated with the set of source code labels that could possibly be the origin
of an actual constructor at that point. A node (S,>) represents the set of all possible
subtrees where each node is annotated with set S. We identify ⊥ with the pair (∅, 〈〉).

We define the expression analysis function Ve[[e]] as:

Vv[[c]] = ⊥

Vv[[x]] = Val(x)

Ve[[v]] = Vv[[v]]

Ve[[(v1 v2)
l]] = In(l)

Ve[[if v then e1 else e2]] = Ve[[e1]] t Ve[[e2]]

Ve[[let x = b in e]] = Ve[[e]]

and the bound-value analysis function Vb[[b]] as:

Vb[[v]] = Vv [[v]]

Vb[[(v1 v2)
l]] = In(l)

Vb[[(λx′.e′)l]] = ({l}, 〈〉)

Vb[[fix (λx′.e′)l]] = ({l}, 〈〉)

Vb[[v1:
lv2]] = cons l Vv[[v1]] Vv[[v2]]

Vb[[{v1, . . . , vn}
l
]] = tuple l 〈Vv [[v1]], . . . ,Vv[[vn]]〉

Vb[[hd v]] = head(Vv[[v]])

Vb[[tl v]] = tail(Vv [[v]])

Vb[[elementk v]] = elem k Vv[[v]]

Vb[[v1! v2]] = Vv [[v2]]

Vb[[receive]] = ⊥

Vb[[spawn (v1 v2)
l]] = ⊥

Vb[[primop o(v1, ..., vn)]] = ⊥

where

cons l x y = ({l}, 〈x〉) t y

tuple l 〈x1, . . . , xn〉 = ({l}, 〈x1, . . . , xn〉)

and

head (s, w) =

(s,>) if w = >
v1 if w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

tail (s, w) =

(s,>) if w = >
(s, w) if w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

elem k (s, w) =

(s,>) if w = >
vk if w = 〈v1, . . . vn〉, k ∈ [1, n]
⊥ otherwise

Because lists are typically much more common than other recursive data structures,
we give them a nonstandard treatment in order to achieve decent precision by simple
means. We make the assumption that in all or most programs, cons cells are used ex-
clusively for constructing proper lists, so the loss of precision for non-proper lists is not
an issue.

Suppose z = cons l x y. If y is (s, 〈v, . . .〉), then the set of top-level constructors of
z is s∪{l}. Furthermore, head z will yield xt v, and tail z yields z itself. Thus even if
a list is of constant length, such as [A, B, C], we will not be able to make distinctions
between individual elements. The approximation is safe; in the above example, x v
head z and y v tail z.

For each label l of a lambda expression (λx.e)l in the program, define Out(l) =
Ve[[e]]. Then for all call sites (v1 v2)

l in the program, including spawns and the dummy
external call labeled xcall, we have ∀l′ ∈ calls(l) : Out(l′) v In(l), and also ∀l′ ∈
calls(l) : Vv [[v2]] v Val(x′), when l′ is the label of (λx′.e′). Furthermore, for each
expression let x = b in e′ we have Vb[[b]] v Val(x).

4.3 Termination

Finding the least solution for Val, In, and Out to the above constraint system for some
program by fixpoint iteration will however not terminate, because of infinite chains
such as ({l}, 〈〉)

�
({l}, 〈 ({l}, 〈〉) 〉)

�
. . . To ensure termination, we use a variant of

depth-k limiting.
We define the limiting operator θk as:

θk (s,>) = (s,>)

θk (s, 〈〉) = (s, 〈〉)

θk (s, 〈v1, . . . , vn〉) = (s, 〈θk−1v1, . . . , θk−1vn〉), if k > 0

θk (s, w) = (labels (s, w),>), if k ≤ 0

where

labels (s,>) = s

labels (s, 〈〉) = s

labels (s, 〈v1, . . . , vn〉) =
⋃n

i=1
labels vi ∪ s

The rules given in Sect. 4.2 are modified as follows: For all call sites (v1 v2)
l,

∀l′ ∈ calls(l) : θkOut(l′) v In(l), and ∀l′ ∈ calls(l) : θkVv[[v2]] v Val(x′), when l′ is
the label of (λx′.e′)l.

Note that without the special treatment of list constructors, this form of approxi-
mation would generally lose too much information; in particular, recursion over a list
would confuse the spine constructors with the elements of the same list. In essence, we
have a “poor man’s escape analysis on lists” [16] for a dynamically typed language.

4.4 Escape analysis

As mentioned, in the scheme where data is allocated on the shared heap by default,
the analysis needs to determine which heap-allocated data cannot escape the creating
process, or reversely, which data can possibly escape. Following [18], we let Escaped
represent the set of all escaping values, and add the following straightforward rules:

1. In(xcall) v Escaped
2. Vv[[v2]] v Escaped for all call sites (v1 v2)

l such that xlambda ∈ calls(l)
3. Vv[[v2]] v Escaped for all send operators v1! v2

4. Vv[[v1]] v Escaped and Vv[[v2]] v Escaped for every spawn (v1 v2) in the program

After the fixpoint iteration converges, if the label of a data constructor operation
(including lambdas) in the program is not in labels(Escaped), the result produced by
that operation does not escape the process.

It is easy to extend this escape analysis to simultaneously perform a more precise
closure analysis than [18], which only uses sets, but doing so here would cloud the is-
sues of this paper. Also, ERLANG programs tend to use fewer higher-order functions,
in comparison with typical programs in e.g. Scheme or ML, so we expect that the im-
provements to the determined call graphs would not be significant in practice. Note
that although our analysis is not in itself higher-order, we are able to handle the full
higher-order language with generally sufficient precision.

4.5 Message analysis

If we instead choose to allocate data on the local heap by default, we want the analysis
to tell us which data could be part of a message, or reversely, which data cannot (or is
not likely to). Furthermore, we need to be able to see whether or not a value could be a
data constructor passed from outside the program.

For this purpose, we let the label unknown denote any such external constructor, and
let Message represent the set of all possible messages.

We have the following rules:

1. ({unknown},>) v In(l) for all call sites (v1 v2)
l such that xlambda ∈ calls(l)

2. Vv[[v2]] v Message for every v1! v2 in the program
3. Vv[[v1]] v Message and Vv [[v2]] v Message for every spawn (v1 v2) in the program

The main difference from the escape analysis, apart from also tracking unknown
inputs, is that in this case we do not care about values that leave the current process
except through explicit message passing. (The closure and argument used in a spawn

can be viewed as being “sent” to the new process.) Indeed, we want to find only those
values that may be passed from the constructor point to a send operation without leaving
the current process.

Upon reaching a fixpoint, if the label of a data constructor is not in labels(Message),
the value constructed at that point is not part of any message. Furthermore, for each ar-
gument vi to any constructor, if unknown 6∈ labels(Vv[[vi]]), the argument value cannot
be the result of a constructor outside the analyzed program. Note that since the result
of a receive is necessarily a message, we know that it already is located in the shared
area, and therefore not “unknown”.

5 Using the Analysis Information

Depending on the selected scheme for allocation and message passing, the gathered
escape information is used as follows in the compiler for the hybrid architecture:

5.1 Local allocation of non-messages

In this case, each data constructor in the program such that a value constructed at that
point is known to not be part of any message, is rewritten so that the allocation will
be performed on the local heap. No other modifications are needed. Note that with this
scheme, unless the analysis is able to report some constructors as non-escaping, the
process-local heaps will not be used at all.

5.2 Shared allocation of possible messages

This requires two things:

1. Each data constructor in the program such that a value constructed at that point is
likely to be a part of a message, is rewritten so that the allocation will be done on
the shared heap.

2. For each argument of those message constructors, and for the message argument of
each send-operation, if the passed value is not guaranteed to already be allocated
on the shared heap, the argument is wrapped in a call to copy, in order to maintain
the pointer directionality requirement.

In effect, with this scheme, we attempt to push the run-time copying operations
backwards past as many allocation points as possible or suitable. It may then occur
that because of over-approximation, some constructors will be made globally allocated
although they will in fact not be part of any message. It follows that if an argument to
such a constructor might be of unknown origin, it could be unnecessarily copied from
the private heap to the shared area at runtime.

1 -module(test).

2 -export([main/3]).

3

4 main(Xs, Ys, Zs) ->

5 P = spawn(fun receiver/0),

6 mapsend(P, fun (X) -> element(2, X) end,

7 filter(fun (X) -> mod:test(X) end,

8 zipwith3(fun (X, Y, Z) -> {X, {Y, Z}} end,

9 Xs, Ys, Zs))),

10 P ! stop.

11

12 zipwith3(F, [X | Xs], [Y | Ys], [Z | Zs]) ->

13 [F(X, Y, Z) | zipwith3(F, Xs, Ys, Zs)];

14 zipwith3(F, [], [], []) -> [].

15

16 filter(F, [X | Xs]) ->

17 case F(X) of

18 true -> [X | filter(F, Xs)];

19 false -> filter(F, Xs)

20 end;

21 filter(F, []) -> [].

22

23 mapsend(P, F, [X | Xs]) ->

24 P ! F(X), mapsend(P, F, Xs);

26 mapsend(P, F, []) -> ok.

27

28 receiver() ->

29 receive

30 stop -> ok;

31 {X, Y} -> io:fwrite("~w: ~w.\n", [X, Y]), receiver()

33 end.

Fig. 3. ERLANG program example.

5.3 Example

In Fig. 3, we show an example of an ERLANG program using two processes. The main
function takes three equal-length lists, combines them into a single list of nested tuples,
filters that list using a boolean function test defined in some other module mod, and
sends the second component of each element in the resulting list to the spawned child
process, which echoes the received values to the standard output.

The corresponding Core Erlang code looks rather similar. Translation to the lan-
guage of this paper is straightforward, and mainly consists of expanding pattern match-
ing, currying functions and identifying applications of primitives such as hd, tl, !,
elementk, receive, etc., and primitive operations like >, is nil and is cons. Be-
cause of separate compilation, functions residing in other modules, as in the calls to
mod:test(X) and io:fwrite(...), are treated as unknown program parameters.

For this example, our escape analysis determines that only the list constructors in
the functions zipwith3 and filter (lines 13 and 18, respectively) are guaranteed to
not escape the executing process, and can be locally allocated. Since the actual elements
of the list, created by the lambda passed to zipwith3 (line 8), are being passed to an
unknown function via filter, they must be conservatively viewed as escaping.

On the other hand, the message analysis recognizes that only the innermost tuple
constructor in the lambda body in line 8, plus the closure fun receiver/0 (line 5),
can possibly be messages. If the strategy is to allocate locally by default, then placing
that tuple constructor directly on the shared heap could reduce copying. However, the
arguments Y and Z could both be created externally, and could thus need to be copied to
maintain the pointer directionality invariant. The lambda body then becomes

{X, shared 2 tuple(copy(Y), copy(Z))}

where the outer tuple is locally allocated. (Note that the copy wrappers will not copy
data that already resides on the shared heap; cf. Sect. 3.)

6 Performance Evaluation

The default runtime system architecture of Erlang/OTP R9 (Release 9)1 is the process-
centric one. Based on R9, we have also implemented the modifications needed for
the hybrid architecture using the local-by-default allocation strategy, and included the
above analyses and transformations as a final stage on the Core Erlang representation
in the Erlang/OTP compiler. By default, the compiler generates byte code from which,
on SPARC or x86-based machines, native code can also be generated. We expect that
the hybrid architecture will be included as an option in Erlang/OTP R10.

6.1 The benchmarks

The performance evaluation was based on the following benchmarks:

life Conway’s game of life on a 10 by 10 board where each square is implemented as a
process.

eddie A medium-sized ERLANG application implementing an HTTP parser which
handles http-get requests. This benchmark consists of a number of ERLANG mod-
ules and tests the effectiveness of our analyses under separate (i.e., modular) com-
pilation.

nag A synthetic benchmark which creates a ring of processes. Each process creates one
message which will be passed on 100 steps in the ring. nag is designed to test the
behavior of the memory architectures under different program characteristics. The
arguments are the number of processes to create and the size of the data passed in
each message. It comes in two flavours: same and keep. The same variant creates
one single message which is wrapped in a tuple together with a counter and is then
continously forwarded. The keep variant creates a new message at every step, but
keeps received messages live by storing them in a list.

1 Available commercially from www.erlang.com and as open-source from www.erlang.org.

6.2 Effectiveness of the message analysis

Table 1 shows numbers of messages and words copied between the process-local heaps
and the message area in the hybrid system, both when the message analysis is not used2

and when it is.

Table 1. Numbers of messages sent and (partially) copied in the hybrid system.

Messages Messages copied Words Words copied
Benchmark sent No analysis Analysis sent No analysis Analysis

life 8,000,404 100% 0.0% 32,002,806 100% 0.0%
eddie 20,050 100% 0.3% 211,700 81% 34%

nag - same 1000x250 103,006 100% 1.0% 50,829,185 1.6% < 0.02%
nag - keep 1000x250 103,006 100% 1.0% 50,329,185 100% < 0.02%

In the life benchmark, we see that while there is hardly any reuse of message data, so
that the plain hybrid system cannot avoid copying data from the local heaps to the shared
area, when the analysis is used the amount of copying shrinks to zero. This is expected,
since the messages are simple and are typically built just before the send operations. The
eddie benchmark, which is a real-world concurrent program, reuses about one fifth of
the message data, but with the analysis enabled, the amount of copying shrinks from
81% to 34%. That this figure is not even lower is likely due to the separate compilation
of its component modules, which limits the effectiveness of the analysis. In the same
benchmark, we see that the hybrid system can be effective even without analysis when
message data is heavily reused (only the top level message wrapper is copied at each
send), but the analysis still offers an improvement. The keep version, on the other hand,
creates new message data each time, and needs the analysis to avoid copying. It is clear
from the table that, especially when large amounts of data are being sent, using message
analysis can avoid much of the copying by identifying data that can be preallocated on
the shared heap.

6.3 Compilation overhead due to the analysis

In the byte code compiler, the analysis takes on average 19% of the compilation time,
with a minimum of 3%. However, the byte code compiler is fast and relatively simplis-
tic; for example, it does not in itself perform any global data flow analyses. Including
the message analysis as a stage in the more advanced HiPE native code compiler [13],
its portion of the compilation time is below 10% in all benchmarks. ERLANG modules
are separately compiled, and most source code files are small (less than 1000 lines).
The numbers for eddie show the total code size and compilation times for all its mod-
ules. We have included the non-concurrent programs prettyprint, pseudoknot, and
inline to show the overhead of the analysis on the compilation of larger single-module
applications.

2 The number of messages partially copied when no analysis is used can in principle be less than
100%, but only if messages are being forwarded exactly as is, which is rare.

Table 2. Compilation and analysis times.

Byte code compilation Native code compilation
Benchmark Lines Size (bytes) Time (s) Analysis part Time (s) Analysis part

life 201 2,744 0.7 6% 2.3 2%
eddie 2500 86,184 10.5 9% 76.4 1%

nag 149 2,764 0.7 5% 2.2 1%
prettyprint 1081 10,892 0.9 30% 13.1 2%

pseudoknot 3310 83,092 4.2 30% 12.7 9%
inline 2700 36,412 4.0 49% 19.3 7%

6.4 Runtime performance

All benchmarks were ran on a dual processor Intel Xeon 2.4 GHz machine with 1 GB of
RAM and 512 KB of cache per processor, running Linux. Times reported are the mini-
mum of three runs and are presented excluding garbage collection times and normalized
w.r.t. the process-centric memory architecture. Execution is divided into four parts: cal-
culating message size (only in the process-centric architecture), copying of messages,
bookkeeping overhead for sending messages, and mutator time (this includes normal
process execution and scheduling, data allocation and initialization, and time spent in
built-in functions).

In the figures, the columns marked P represent the process-centric (private heap)
system, which is the current baseline implementation of ERLANG/OTP. Those marked
H represent the hybrid system without any analysis to guide it (i.e., all data is originally
allocated on the process-local heaps), and the columns marked A are those representing
the hybrid system with the message analysis enabled.

0%

20%

40%

60%

80%

100%

Size

Copy

Send

Mutator

H HA A

Life Eddie

P P

Fig. 4. Performance of non-synthetic programs.

In Fig. 4, the life benchmark shows the behaviour when a large number of small
messages are being passed. The hybrid system with analysis is about 10% faster than
the process-centric system, but we can see that although enabling the analysis removes
the need for actual copying of message data (cf. Table 1), we still have a small overhead
for the runtime safety check performed at each send operation (this could in principle be
removed), which is comparable to the total copying time in the process-centric system

when messages are very small. We can also see how the slightly more complicated
bookkeeping for sending messages is noticeable in the process-centric system, and how
on the other hand the mutator time can be larger in the hybrid system. (One reason is
that allocation on the shared heap is more expensive.) In eddie, the message passing
time is just a small fraction of the total runtime, and we suspect that the slightly better
performance of the hybrid system is due to better locality because of message sharing
(cf. Table 1).

0%

20%

40%

60%

80%

100%

Size

Copy

Send

Mutator

P P P PH H H HA A A A

250 x 100 250 x 250 1000 x 100 1000 x 250

Same

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%
240%
260%
280%

Size

Copy

Send

Mutator

Keep

P P P PH H H HA A A A

250 x 100 250 x 250 1000 x 100 1000 x 250

Fig. 5. Performance of the same and keep variants of the nag benchmark.

Figure 5 shows the performance of the nag benchmark. Here, the hybrid system
shows its advantages compared to the process-centric system when messages are larger,
especially in the same program where most of the message data is reused. (Naturally,
the speedup can be made arbitrarily large by increasing the message size, but we think
that we have used reasonable sizes in our benchmarks, and that forwarding of data is
not an atypical task in concurrent applications.) In the keep case, we see that the hybrid
system with message analysis enabled is usually faster than the process-centric system
also when there is no reuse. The excessive copying times in the hybrid system without
the analysis show a weakness of the current copying routine, which uses the C call stack
for recursion (the messages in this benchmark are lists).

7 Related Work

Our message analysis is in many respects similar to escape analysis. Escape analysis
was introduced by Park and Goldberg [16], and further refined by Deutsch [9] and
Blanchet [3]. So far, its main application has been to permit stack allocation of data
in functional languages. In [4], Blanchet extended his analysis to handle assignments
and applied it to the Java language, allocating objects on the stack and also eliminat-
ing synchronization on objects that do not escape their creating thread. Concurrently
with Blanchet’s work, Bogda and Hölzle [5] used a variant of escape analysis to simi-
larly remove unnecessary synchronization in Java programs by finding objects that are
reachable only by a single thread and Choi et al. [8] used a reachability graph based
escape analysis for the same purposes. Ruf [17] focuses on synchronization removal by
regarding only properties over the whole lifetimes of objects, tracking the flow of val-
ues through global state but sacrificing precision within methods and especially in the

presence of recursion. It should be noted that with the exception of [8], all these escape
analyses rely heavily on static type information, and in general sacrifice precision in the
presence of recursive data structures. Recursive data structures are extremely common
in ERLANG and type information is not available in our context.

Our hybrid memory model is inspired in part by a runtime system architecture de-
scribed by Doligez and Leroy in [10] that uses thread-specific areas for young genera-
tions and a shared data area for the old generation. It also shares characteristics with the
architecture of KaffeOS [2], an operating system for executing Java programs. Using
escape analysis to guide a memory management system with thread-specific heaps was
described by Steensgaard [19].

Notice that it is also possible to view the hybrid model as a runtime system architec-
ture with a shared heap and separate regions for each process. Region-based memory
management, introduced by Tofte and Talpin [20], typically allocates objects in sepa-
rate areas according to their lifetimes. The compiler, guided by a static analysis called
region inference, is responsible to generate code that deallocates these areas. The sim-
plest form of region inference places objects in areas whose lifetimes coincide with that
of their creating functions. In this respect, one can view the process-specific heaps of
the hybrid model as regions whose lifetime coincides with that of the top-level function
invocation of each process, and see our message analysis as a simple region inference
algorithm for discovering data which outlives their creating processes.

8 Concluding Remarks

Aiming to employ a runtime system architecture which is tailored to the intended use
of data in high-level concurrent languages, we have devised a powerful and practical
static analysis, called message analysis, that can be used to guide the allocation process.
Notable characteristics of our analysis are that it is tailored to its context, a dynamically
typed, higher-order, concurrent language employing asynchronous message passing,
and the fact that it does not sacrifice precision in the presence of recursion over lists. As
shown in our performance evaluation, the analysis is in practice fast, effective enough
to discover most data which is to be used as a message, and allows the resulting system
to combine the best performance characteristics of both a process-centric and a shared-
heap architecture and achieve (often significantly) better performance.

References

1. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming in
Erlang. Prentice-Hall, second edition, 1996.

2. G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, resource manage-
ment, and sharing in Java. In Proceedings of the 4th USENIX Symposium on Operating
Systems Design and Implementation, Oct. 2000. http://www.cs.utah.edu/flux/papers/.

3. B. Blanchet. Escape analysis: Correctness proof, implementation and experimental results.
In Conference Record of the 25th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL’98), pages 25–37. ACM Press, Jan. 1998.

4. B. Blanchet. Escape analysis for object oriented languages. Application to JavaTM . In
Proceedings of the 14th Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’99), pages 20–34. ACM Press, Nov. 1999.

5. J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java. In Proceedings of
the 14th Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’99), Nov. 1999.

6. R. Carlsson. An introduction to Core Erlang. In Proceedings of the PLI’01 Erlang Workshop,
Sept. 2001.

7. R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nyström, M. Pettersson, and
R. Virding. Core Erlang 1.0 language specification. Technical Report 030, Information
Technology Department, Uppsala University, Nov. 2000.

8. J.-D. Choi, M. Gupta, M. Serrano, V. C. Shreedhar, and S. Midkiff. Escape analysis for
Java. In Proceedings of the 14th Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’99), pages 1–19. ACM Press, Nov. 1999.

9. A. Deutsch. On the complexity of escape analysis. In Conference Record of the 24th Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages 358–
371, Jan. 1997.

10. D. Doligez and X. Leroy. A concurrent, generational garbage collector for a multithreaded
implementation of ML. In Conference Record of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 113–123. ACM Press, Jan. 1993.

11. T. Domani, G. Goldshtein, E. Kolodner, E. Lewis, E. Petrank, and D. Sheinwald. Thread-
local heaps for Java. In Proceedings of ISMM’2002: ACM SIGPLAN International Sympo-
sium on Memory Management, pages 76–87. ACM Press, June 2002.

12. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with con-
tinuations. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM Press, June 1993.

13. E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A High Performance Erlang system.
In Proceedings of the ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 32–43. ACM Press, Sept. 2000.

14. E. Johansson, K. Sagonas, and J. Wilhelmsson. Heap architectures for concurrent languages
using message passing. In Proceedings of ISMM’2002: ACM SIGPLAN International Sym-
posium on Memory Management, pages 88–99. ACM Press, June 2002.

15. R. E. Jones and R. Lins. Garbage Collection: Algorithms for automatic memory manage-
ment. John Wiley & Sons, 1996.

16. Y. G. Park and B. Goldberg. Escape analysis on lists. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 116–127. ACM
Press, July 1992.

17. E. Ruf. Effective synchronization removal for Java. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 208–218. ACM Press,
June 2000.

18. O. Shivers. Control flow analysis in Scheme. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 164–174. ACM Press,
June 1988.

19. B. Steensgaard. Thread-specific heaps for multi-threaded programs. In Proceedings of
the ACM SIGPLAN International Symposium on Memory Management, pages 18–24. ACM
Press, Oct. 2000.

20. M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computa-
tion, 132(2):109–176, Feb. 1997.

