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Abstract

We present an efficient memory management scheme for concurrent programming languages where communication occurs by
using message passing with copying semantics. The runtime system is built around process-local heaps, which frees the memory
manager from redundant synchronization in a multi-threaded implementation and allows the memory reclamation of process-local
heaps to be a private business and to often take place without ever triggering garbage collection. The allocator is guided by a static
analysis which speculatively allocates data possibly used as messages in a shared memory area. To respect the (soft) real-time
requirements of the language, we develop and present in detail a generational, incremental garbage collection scheme tailored
to the characteristics of this runtime system. The incremental collector imposes no overhead on the mutator, requires no costly
barrier mechanisms, has a relatively small space overhead, and can be scheduled on the basis of either a time or a work quantum.
We have implemented these schemes in the context of an industrial-strength implementation of a concurrent functional language
used to develop large-scale, highly concurrent, telecommunication applications. Our measurements across a range of applications
indicate that the incremental collector imposes only very small overhead on the total runtime and can achieve very short pause times
(1 ms or less) while being able to sustain a high degree of mutator utilization.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Concurrent real-time programming languages with automatic memory management present new challenges to
programming language implementors. One is how to tailor the runtime system to the intended use of data and achieve
performance which does not degrade for highly concurrent applications and scales well in a multi-processor setting.
By highly concurrent, we mean applications consisting of several thousand or several hundreds of thousands of
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threads (or cooperating processes). Another challenge is to achieve the high level of responsiveness that is required
by applications from domains such as embedded control and telecommunication systems.

Taking up the latter challenge becomes tricky when automatic memory management is performed using garbage
collection (GC). The naı̈ve “stop-the-world” approach, where threads repeatedly interrupt execution of a user’s
program in order to perform garbage collection, is clearly inappropriate for applications with real-time requirements.
It is also problematic on principle. This is because it introduces a point of global synchronization between otherwise
independent threads and possibly also tasks (i.e. between collections of threads conceptually forming independent
work units). Also, it provides no guarantees for bounds on the length of the individual pauses or for sufficient progress
by the application.

Despite the significant progress in developing automatic memory reclamation techniques with real-time
characteristics [3,4,8,17], each technique is designed around a number of (often implicit) assumptions about the
architecture of the runtime system that might not be the most appropriate ones to follow in a different context and thus
may not be easily adaptable. Also, different languages have different characteristics which influence the trade-offs
associated with each technique. For example, many collectors for object-oriented languages such as Java assume that
allocating an extra header word for each object does not penalize execution times by much and does not impose a
significant space overhead. In functional languages where the majority of objects occupy just two words, adding an
extra word to all objects just for the collector’s convenience is typically not a viable alternative. (After all, the collector,
although important, is only a part of the implementation.) Similarly, the semantics of a language may favor the use of a
read rather than a write barrier and the absence of destructive updates may allow for more liberal forms of incremental
collection (for example, based on the replication of objects [19]). Finally, it is clear that the type of GC which is
employed interacts with and is influenced by the object allocation technique that is used (in a thread-local or shared
memory region, such that it allows the regions to be collected independently, and so on) and, if applicable, the static
analysis which guides the allocator. In short, it is very difficult to come up with techniques that can be readily tailored
to all languages and runtime environments, and most implementation choices which influence the performance of
garbage collection have non-trivial interactions. An important point, for which this article implicitly tries to make a
case, is that one needs a carefully selected combination of memory allocation and garbage collection techniques in
order to achieve high performance. Memory allocation and memory reclamation concerns typically involve trade-offs
which influence each other.

The work that we describe in this article is performed in the context of a concurrent functional language without
destructive updates and where interprocess communication occurs using message passing. We first review the
language (Section 2) and then present the details of a runtime system whose memory manager splits the allocated
memory into areas based on the intended use of data (Section 3). Its memory allocator is guided by a static
analysis, which speculatively allocates data possibly used as messages in a shared memory area. Based on the
characteristics of each memory area, we then discuss the various types of garbage collection methods which are
employed (Section 4). In the main body of this article (Sections 5 and 6), which contain its primary contribution, we
develop and analyze a generational incremental garbage collection scheme tailored to the runtime system of Section 3.
Notable characteristics are that the collector imposes no noticeable overhead on the mutator, requires no costly barrier
mechanisms, has a relatively small space overhead, and can be scheduled on a very fine-grained manner using either
a work or a time quantum.1 We report on the performance of these memory management schemes across a range of
applications (Section 7) and show that when using the incremental collector, through various optimizations which we
discuss in the article, we are able to sustain the overall performance of the system, obtain extremely small pause times,
and achieve a high degree of mutator utilization. The article ends with a review of related work (Section 8) and some
concluding remarks (Section 9).

2. Preliminaries

To describe the context of the work, we briefly review the Erlang language (Section 2.1) and the runtime system
architectures of the Erlang/OTP system (Section 2.2).

1 The time-based variant of the incremental garbage collection algorithm that we develop is actually a real-time GC algorithm, but we refrain
from referring to it as such since, in our current implementation, it is applied to only part of the memory that is reclaimed using GC.
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2.1. Erlang and Erlang/OTP

Erlang [2] is a strict (i.e., uses call-by-value), dynamically typed functional programming language with support for
concurrency, communication, distribution and fault-tolerance. It offers automatic memory management and supports
multiple platforms. Erlang was designed to ease the programming of soft real-time control systems commonly
developed by the data-communications and telecommunications industry. Its implementation, the Erlang/OTP system,
has so far been used quite successfully both by Ericsson and by other companies around the world (e.g., T-Mobile,
Nortel Networks) to develop large commercial applications.

Erlang’s basic data types are atoms, numbers (floats and arbitrary precision integers), and process identifiers;
compound data types are lists and tuples. A notation for objects (records in the Erlang lingo) is supported, but the
underlying implementation of records is the same as tuples. To allow efficient implementation of telecommunication
protocols, Erlang also includes a binary data type (a vector of byte-sized data) and a notation to perform pattern
matching on binaries. There is no destructive assignment of variables or objects stored in the heap (i.e., all heap data
is immutable) and consequently cyclic references cannot be created. Because recursion is the only means to express
iteration, tail call optimization is a required feature of Erlang implementations.

Processes in Erlang are extremely light-weight (significantly lighter than Java threads, for example) and their
number in typical applications is quite large (it is not uncommon to spawn several hundred thousand processes on a
single node). Erlang’s concurrency primitives — spawn, “!” (send), and receive — allow a process to spawn new
processes and communicate with other processes through asynchronous message passing with copying semantics.
At the language level, this means that it is indistinguishable whether processes share the same or have physically
different copies of a message.2 It also means that, if needed, messages can be replicated at will by the runtime system.
For example, the mutator is allowed to access messages in both the from-space and to-space of a copying collector.
A message is simply an Erlang term, which means that any data value can be sent as a message, and the message’s
recipient may be located on any machine on the network. Each process has a mailbox, essentially a message queue,
which contains pointers to each message sent to the process. The message itself, being a term, is stored on the heap.
Message reception from the mailbox is selective: the receive statement scans the mailbox and selects from it the first
message that matches the patterns that it expects. In send operations, the receiver is specified by its process identifier,
regardless of where it is located, making distribution all but invisible. To support robust systems, a process can register
to receive a message if another one terminates. Erlang also provides a mechanism that allows a process to time-out
while waiting for messages and a try/catch-style exception mechanism for error handling.

Erlang is often used in high-availability large-scale embedded systems, such as telephone centers, with very strict
requirements on continuous and smooth operation (typically, down-time is required to be less than five minutes per
year). Moreover, these systems typically also require a high level of responsiveness, and the soft real-time concerns
of the language call for fast garbage collection techniques such as those presented in this article.

2.2. The three runtime systems of Erlang/OTP

Until quite recently, the Erlang/OTP runtime system was based on a process-centric architecture; that is, an
architecture where each process allocates and manages its private memory area. The main reason why this memory
allocation scheme was chosen was that it was believed that it results in lower garbage collection latency. Wanting to
investigate the validity of this belief, in a previous paper [15] we examined two alternative runtime system architectures
for implementing concurrency through message passing: one which is communal where all processes get to share the
same heap, and a hybrid scheme where each process has a private heap for process-local data but where a shared
heap is used for data sent as messages and thus shared between processes. All three architectures are included in the
Erlang/OTP release. Selecting the desired one is a matter of invoking the system with the appropriate command-line
option. We briefly review their characteristics.

2 In Erlang there are are no destructive updates, but even if there were, the copying semantics of message passing dictate that updates to a
message by the sender, for example, would be invisible to the receiver after the message has been sent. On the other hand, the copying semantics of
message passing do not dictate that messages have to be eagerly copied when sent, which allows for efficient implementations of message-passing
concurrency such as those described in this article.
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Fig. 1. Layout of the hybrid architecture showing allowed references.

Process-centric. In this architecture, interprocess communication requires copying of messages and thus is an O(n)

operation, where n is the message size. Since garbage collection of process-local heaps typically happens
only for processes that overflow their area and the collector does not have global control of allocated memory,
other processes often hold on to more memory than they actually need. Thus, memory fragmentation tends to
be higher than in a shared heap architecture. Advantages are that the garbage collection times and pauses are
expected to be small (as the root set need only consist of the stack of the process requiring collection) and,
upon termination of a process, its allocated memory area can be reclaimed in constant time (without garbage
collection).

Communal. The biggest advantage is very fast (O(1)) interprocess communication, simply consisting of passing a
pointer to the receiving process, reduced memory requirements due to message sharing, and low external
fragmentation. Disadvantages include having to consider the stacks of all processes as part of the root
set (resulting in increased GC latency) and possibly poor cache performance due to processes’ data being
interleaved on the shared heap. Furthermore, the communal architecture does not scale well to a multi-
threaded or multi-processor implementation, since locking would be required in order to allocate in and
collect the shared memory area in a parallel setting.

Hybrid. An architecture that tries to combine the advantages of the above two architectures: interprocess
communication can be fast, and GC latency for the frequent collections of the process-local heaps is expected
to be small. No locking is required for the garbage collection of the process-local heaps, and the pressure on
the shared heap is reduced so that it does not need to be garbage collected as often. Also, as in the process-
centric architecture, when a process terminates, its local memory can be reclaimed by simply attaching it to
a free-list.

Note that these runtime system architectures are applicable to all systems that employ message passing. Their
advantages and disadvantages do not depend in any way on characteristics of the Erlang language or its current
implementation.

In this article we concentrate on the hybrid architecture. The reasons are both pragmatic and principled.
Pragmatic because this architecture behaves best in practice, and principled because it combines the best performance
characteristics of the other two runtime system architectures and is the enabling technology for a scalable multi-
threaded implementation. Also, the garbage collection techniques developed in its context are applicable to the other
runtime system architectures with only minor adjustments.
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3. Memory organization of the hybrid architecture

Fig. 1 shows an abstraction of the memory organization in the hybrid architecture. Areas with stripes show currently
unused memory; the shapes in heaps and the arrows represent objects and pointers. In the state shown, three processes
(P1, P2, and P3) are present. Each process has a process control block (PCB) which includes the process’ mailbox,
and a contiguous private memory area with a stack and a process-local heap growing toward each other. The size of
this memory area is either specified as an argument to the spawn primitive, set globally by the user for all processes,
or defaults to a small system constant (currently 233 words). Besides the private areas, there are two shared memory
areas in the system: one used for binaries above a certain size (that is, a large object area), and a shared heap intended
to be used for data sent between processes in the form of messages. We refer to the latter area as the message area. In
the state shown, process P3 has created a message on the message area and the send operation has passed a pointer
to it to P2’s mailbox. Since P3 still keeps a pointer to this message, the message is shared.

3.1. The pointer directionality invariants

A key point in the design of the hybrid architecture is to be able to garbage collect the process-local heaps
individually. In particular, we want to avoid having to consider roots outside the memory area of the process which is
being collected. In a multi-threaded system, this allows process-local heaps to be collected independently and without
synchronization. To achieve this, we maintain as an invariant of the runtime system that there are no pointers from
the shared areas to the local heaps, nor from one process-local area to another. These invariants are maintained by
the allocator. Once allocation has taken place, the invariants are automatically preserved, since there are no pointer
destructions in our setting. If, on the other hand, pointers from the shared areas to the local heaps were allowed or
could be created during execution, then these would have to be traced so that what they point to would be considered
live during process-local collections. Keeping track of them could be achieved by a write barrier, but we want to avoid
completely the time and space overhead that a barrier mechanism incurs, no matter how small this overhead might be
made.

Fig. 1 shows all types of pointers that can exist in the system. In particular:

• The area for binaries does not contain pointers to the process-local heaps or the message area. Binaries are objects
(e.g., a network packet) whose contents are raw sequences of zeros and ones, and consequently this area has no
references visible to the garbage collector.

• The message area only contains references to the shared area for binaries or to objects within the message area
itself.

• None of the areas contains any cyclic data.

The pointer directionality invariants for the message area are also crucial for our choice of memory allocation
strategy, since they make it easy to test at runtime whether or not a piece of data resides in the message area by
making a simple O(1) pointer comparison.

3.2. Allocation in the hybrid architecture

To take full advantage of the organization of the hybrid architecture, the system needs to be able to distinguish
between data which is process-local and data which is to be shared, i.e., used as messages. This could conceivably
be achieved by user annotations on the source code, by dynamically monitoring the creation of data, or by the static
message analysis that we have previously developed and integrated in the hybrid runtime system configuration of
Erlang/OTP.

For the purposes of this article, the details of the message analysis are unimportant and the interested reader is
referred to the corresponding paper [5]. Instead, it suffices to understand how the analysis guides allocation of data
in the compiler. The allocation can be described as allocation by default on the local heap and shared allocation
of possible messages. More specifically, data that is likely to be part of a message is allocated speculatively on the
shared heap and all other data on the process-local heaps. To maintain the pointer directionality invariants, this in
turn requires that the message operands of all send operations are wrapped with a copy-on-demand operation, which
verifies that the message resides in the shared area, and otherwise copies the locally allocated parts to the shared heap.
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Fig. 2. Sizes of heap objects for three big Erlang applications.

However, if the message analysis can determine that a message operand must already be on the shared heap, the test
can be statically eliminated. In practice, this happens often, as the analysis is quite effective; see the performance
results reported in Ref. [5].

Regardless of its effectiveness, however, note that the copying semantics of message passing allows the message
analysis safely to both under-approximate and over-approximate uses of data as messages. With under-approximation,
the data will be copied to the message area in the send operation and the behavior of the hybrid architecture will be
similar to the process-centric architecture, except that data which is repeatedly passed from one process to another
will only be copied once. On the other hand, if the analysis over-approximates, most of the data will be allocated on
the shared heap and we will not benefit from the process-local heaps and data will need to be reclaimed by global
garbage collection.

3.3. Allocation characteristics of Erlang programs

From the memory manager’s perspective, the Erlang heap only contains two kinds of objects: cons cells (that is,
list objects with a head and a tail element whose size is just two words) and boxed objects. Boxed objects are tuples,
arbitrary precision integers, floats, binaries, and function closures. Boxed objects contain a header word which either
directly or indirectly includes information about the object’s size. In contrast, there is no header word for cons cells.
Fig. 2 shows a detailed breakdown of the allocation characteristics of three of the benchmark programs used in this
article. We have also run a wide range of other Erlang programs and commercial applications to which we have access,
and have discovered that nearly three quarters (73%) of all heap-allocated objects are cons cells. Out of the remaining
ones, fewer than 1% are larger than eight words. Although these numbers have to be taken with a grain of salt, since
each application has its own memory allocation characteristics, it is quite safe to conclude that, in contrast to, for
example, a Java implementation, there is a significant number of heap-allocated objects which are small in size and
which do not contain a header word. Adding an extra word to every object would significantly penalize execution
and space consumption and is therefore not an option that we consider as viable in our setting. How this constraint
influences the design of the incremental garbage collector is discussed in Section 6.

4. Garbage collection in the hybrid architecture

We discuss the garbage collection schemes that are employed on each memory area, based on the area’s
characteristics and intended use.

4.1. Generational garbage collection of process-local heaps

As mentioned above, when a process dies, all its allocated memory area can be reclaimed directly without the need
for garbage collection. This property in turn encourages the use of processes as a form of programmer-controlled
regions: a computation that requires a lot of auxiliary space can be performed in a separate process that sends its result
as a message to its consumer and then dies. In fact, because the default runtime system architecture has for many
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years been the process-centric one, many Erlang applications have been written and fine-tuned with this memory
management model in mind.3

When a process runs out of its allocated memory, the runtime system garbage collects its heap using a generational,
Cheney-style, stop-and-copy collector [7]. An interesting characteristic of this generational collector is that it does not
require the use of a remembered set mechanism. This is because the Erlang/OTP process-local heaps are unidirectional
(that is, pointers always point from new to old objects) and, as a result, the runtime system never creates any pointers
from the old generation to the young generation, again ensuring that this property is possible, since there are no
destructive assignments in our setting. In the generational collector, data has to survive two garbage collections to
be promoted to the old generation. Also, when running native code instead of byte code, the collector is guided by
stack descriptors (also known as stack maps) and the root set is further reduced by employing generational stack
scanning [9], an optimization which reduces the cost of scanning the root set in the process-local stacks by reusing
information from previous GC scans.

Although the generational collector cannot give any real-time guarantees, pause times when collecting process-
local heaps are typically not a problem in practice. This is because most collections are minor and therefore quite
fast and, as explained above, many Erlang applications have been programmed to use processes for specific, fine-
grained tasks that require a relatively small amount of memory. More importantly, because this runtime architecture
has been designed with the ability to collect process-local heaps independently and without requiring any global
synchronization in a multi-threaded implementation, pauses due to collecting process-local heaps do not jeopardize
the responsiveness of the entire system, as the mutator can service other processes which are in the ready queue.

4.2. Garbage collection of binaries via reference counting

The shared area for binaries is collected using reference counting. The count is stored in the header of binaries and
increased whenever a new reference to a binary is created (for example, when a binary is sent as a message to another
process). Each process maintains a remembered list of such pointers from the process-local heap to binaries stored
in the binary area. When a process dies, the reference counts of binaries in this remembered list are decremented.
A similar action happens for references that are removed from the remembered list as part of garbage collection.
References from the message area are stored in a similar list handled by the garbage collector of the message area.
Since cycles in binaries are not possible, cycle collection is not needed. Also, as binaries do not contain any pointers,
the deletion of a binary does not have cascading effects. In short, garbage collection of binaries is effectively real-time.

4.3. Generational process scanning collection of the message area

Since the message area is shared between processes, the root set is typically large and consists of both the stacks
and the process-local heaps of all processes in the system. As a result, pause times for collecting the message area
using a naı̈ve, “stop-the-world” type of collector are quite high. This situation can be partly ameliorated as follows:

• By splitting the message area into generations and performing generational collection on this area. In fact, one can
employ a non-moving collector (such as mark-sweep) for the old generation to avoid the cost of repeatedly having
to copy long-lived objects. However, we still prefer to manage the young generation by a copying collector. This
is partly in order to capitalize on the fact that most objects tend to die young. More importantly, because a copying
collector results in faster allocation, the live data is compacted and allocation can take place by pointer bumping.

• By performing an optimization introduced in this article, which we will call generational process scanning because
it is the natural extension of generational stack scanning [9] from the single- to the multiple-process setting. More
specifically, similarly to how generational stack scanning tries to reduce the root set that has to be considered during
a process-local GC to only the new part of the stack (that is, the part created in the period between two consecutive
minor garbage collections), generational process scanning tries to reduce the number of processes whose memory
areas are considered to be part of the root set. In implementation terms, the runtime system maintains information
about processes which have been active communication-wise (that is, allocated in the message area or received a
message) since the last garbage collection. These are the only processes that could hold new references to objects

3 In this respect, process-local heaps are very much like arenas used by the Apache Web server [23] to deallocate all the memory allocated by a
Web script after its termination.
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in the message area. These processes are put in a data structure, called the dirty process set, and are the only ones
considered as part of the root set during the frequent minor collections. Otherwise, the collector of the message
area would have to scan possibly many thousands of processes for references to the messaga area.

These techniques for collecting the message area are quite effective. However, they cannot, of course, provide any real-
time guarantees — not even soft real-time guarantees — and cannot prevent collection of the message area becoming
a bottleneck in highly concurrent applications. For the message area, we need a garbage collection method that is
guaranteed to result in small pause times such as an incremental or a real-time one.

Note that reference counting is not the most appropriate real-time GC technique to employ in the message area,
even though there are no cyclic data in messages. The main reason is that, unless the compiler maintains precise
information about points where variables containing pointers to messages become dead (which, in general, requires
an escape analysis that the variable is not returned as a result from a function to some other function), the only
point when reference counts of messages can be decreased is when a process dies. Decreasing reference counts only
when processes die is not an effective memory reclamation technique; consider, for example, server-like applications
where some processes are long lived. Furthermore, reference counting typically imposes a non-negligible overhead,
especially in a multi-threaded setting where locking is required. A different method for real-time or incremental GC
is called for. In the following sections, we describe the one that we designed and implemented.

5. An incremental collector for the message area

Terminology and assumptions. We will use the term collection stage to refer to a contiguous period of time during
which incremental garbage collection takes place. The term minor collection cycle will be used to refer to a complete
collection of the young generation, and major collection cycle will be used to refer to a complete collection of the entire
message area (both its young and old generations). The collector of the message area that we present is incremental and
is designed with the ability to run concurrently with a single mutator thread or even with a number of mutator threads
which schedule Erlang processes. However, the collector itself is not concurrent. Even on a multi-threaded system, at
most one collector thread is ever present and is a responsibility of the runtime system to ensure this invariant.

We will use the terms of the tricolor abstraction [17, Section 6.1], where objects are assigned one of three colors:
white, gray or black. All objects are white (meaning unprocessed) at the beginning of the collection cycle. The
collector will then change the colors of all objects that it visits to gray and later to black (meaning partly and fully
processed, respectively). All gray objects will be visited by the garbage collector at some point during the collection
cycle, to mark them black. At the end of the collection cycle, no gray objects remain and all objects that are still white
will be reclaimed.

Organization of the message area. Fig. 3 shows the organization of the message area during a collection cycle.

• The young generation is managed by a copying collector and consists of two equal-sized parts: the nursery and the
from-space. The size of each part, Σ , is constant. The nursery is used by the mutator as the allocation area during
a collection cycle. The from-space is used in the copying collection; the to-space is the old generation.

• The old generation, which is collected by a mark-sweep collector, consists of n pages in a linked list. Allocation
uses a free-list and can take place using either an algorithm that is as simple as, for example, first-fit or by
segregating the free-list into sublists for objects of different sizes.

• We also use an area of forwarding pointers (denoted as Fwd in Fig. 3). The reason is that we allow the mutator to
access objects in the from-space between collection stages, that is, during a collection cycle. The mutator does not
expect to find forwarding pointers in the place of objects, and therefore forwarding pointers cannot be stored in the
from-space. The size of this area is limited by the size of the from-space (Σ ).

• To mark an object in the old generation as live, we use a bit array, called the black-map. This bit array is needed
in our implementation, since there is no room for any mark-bits in the actual objects. In other implementations,
mark-bits could be placed in the object headers if space permits.

• Finally, we also use a pointer into the nursery (the allocation limit), whose purpose and usage we describe in
Section 5.2.

Note that the collector does not require any header word in the objects in order to perform incremental copying
collection in the young generation. Therefore, it imposes no overhead to allocation. The collector instead uses an extra
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Fig. 3. Organization of the message area during a collection cycle.

proc message area gc() ≡

if gc major = true →

major collection()

else if gc cycle = true →

minor collection()

else
gc cycle := true
swap(nursery, fromspace) // Atomic operation; see Section 6.2
clear forwarding pointers()
if need major = true →

major collection()

else
minor collection()

update allocation limit()

Fig. 4. The garbage collection algorithm for the message area.

space, namely the forwarding area, whose size is bounded by Σ . Recall that Σ is constant; it does not increase during
garbage collection and is not affected by the allocation characteristics of the program that is being executed. In the
old generation, the only extra overhead is one bit per word for the black-map. To keep track of gray objects, we use a
dynamically resizeable stack. Note that, for the frequent collections of the young generation, the size of this gray stack
is bounded by Σ/2 (since the size of the smallest heap-allocated object is two words). Overall, the space overhead of
the incremental collector is quite low.

As with all incremental collectors, a crucial issue is to decide how and when the switch between the mutator and
the collector will occur. We have investigated two different approaches to this interaction: one which is work-based
and one which is time-based. In both approaches, the collector is given a fixed (work-based or time-based) quantum
to work in. Once this quantum expires, we calculate how much the mutator can be allowed to work before it is time
for the next collection stage. This is discussed in detail in Section 5.2.

5.1. The algorithm

Figs. 4–8 show the structure of the incremental collector. First, two Boolean flags are checked: gc cycle indicates
whether a collection cycle is in progress, while gc major indicates whether the current collection cycle is a minor or
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proc minor collection() ≡

foreach p ∈ Dirty Process Set do
Roots := collect roots(p) // Atomic operation in the time-based collector
foreach r ∈ Roots do

if quantum expired () = true → abort
if points to(r , fromspace) = true → forward (r)

foreach g ∈ Gray do
foreach reference field ref of g do

if quantum expired () = true → abort
if points to(ref , fromspace) = true → forward (ref )

mark black (g) // Remove g from the Gray stack
remove(p,Dirty Process Set)

foreach reference ref in the nursery do
if quantum expired () = true → abort
if points to(ref , fromspace) = true → forward (ref )

foreach g ∈ Gray do
foreach reference field ref in g do

if quantum expired () = true → abort
if points to(ref , fromspace) = true → forward (ref )

mark black (g) // Remove g from the Gray stack

gc cycle := false

Fig. 5. The incremental minor collection algorithm. All roots are traversed and live objects in the from − space are copied to the old generation and
marked as gray. Thereafter, all gray objects are traversed in a similar way to copy their children.

proc copymark (ref ) ≡

if points to(ref , fromspace) = true →

forward (ref )

mark blackmap(ref )

elsif points to(ref , old generation) = true →

if gray or black (ref ) = false →

push gray(ref )

mark blackmap(ref )

Fig. 6. The copymark procedure.

proc forward (object) ≡

if is forwarded (object) = true →

update source ref (object)
else

destination := copy object(object)
push gray(destination)

update source ref (object)
set forward ptr(object, destination)

Fig. 7. Procedure that forwards objects to the old generation. If the object is not forwarded already, it is copied to the old generation and pushed
onto the gray stack.

a major one. The gc major flag is set only if gc cycle is also set, so it is enough to check gc major to know if there
is a major collection cycle in progress. Both flags are set to false in the end of the collection cycle (cf. Fig. 9), which
means that, if both are false in the beginning of message area gc, a new collection cycle should be initiated.

A new collection cycle begins with setting gc cycle . The from-space and the nursery switch roles and all
forwarding pointers are reset. Then the need major flag, which, if needed, has been set during the previous collection
cycle (cf. Fig. 8), is checked to see if this is to be a minor or a major collection cycle and the appropriate action is taken.
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funct copy object(object) ≡

if available in old () < sizeof (object) →

allocate new page()

if gc major = false → need major := true
copy := copy to old (object)

return copy

Fig. 8. Function to copy objects to the old generation. If allocation in the old generation fails, the need major flag is set. This ensures that the next
collection cycle will be a major one.

proc major collection() ≡

if need major = true →

Dirty Process Set := All Processes

clear blackmap()

gc major := true
need major := false
fetch new page for old ()

foreach p ∈ Dirty Process Set do
Roots := collect roots(p) // Atomic operation in the time-based collector
foreach r ∈ Roots do

if quantum expired () = true → abort
copymark (r)

foreach g ∈ Gray do
foreach reference field ref of g do

if quantum expired () = true → abort
copymark (ref )

mark black (g) // Remove g from the Gray stack
remove(p,Dirty Process Set)

foreach reference ref in the nursery do
if quantum expired () = true → abort
copymark (ref )

foreach g ∈ Gray do
foreach reference field ref in g do

if quantum expired () = true → abort
copymark (ref )

mark black (g) // Remove g from the Gray stack

sweep() // Traverse the black-map and build a free-list of the unmarked areas

gc major := false
gc cycle := false

Fig. 9. The incremental major collection algorithm. First, all processes are considered to be dirty. Thereafter, the collection for the old generation
follows.

5.1.1. Actions during minor garbage collection

A minor collection (cf. Fig. 5) starts by picking up the first process from the dirty process set and conceptually takes
a snapshot of its root set. Because we do not want to take a physical copy of the root set snapshot, we simply record the
values of the stack and process-local heap pointer and the pointers in the message queue. So, taking a snapshot simply
consists of recording a set of pointers and is typically a very fast operation. After recording this information, the
mutator can continue allocating in the nursery and reading from from-space, since there are no destructive updates.
The snapshot is then scanned and, when a live object is found in the from-space and this object has not yet been
forwarded, the object is copied to the old generation and added to a stack of gray objects (cf. Fig. 7). Each time we



K. Sagonas, J. Wilhelmsson / Science of Computer Programming 62 (2006) 98–121 109

copy an object, we update the original root references to point to the new location (update source ref ) and store a
forwarding pointer in the forward area to ensure objects are copied at most once (set forward ptr). If the object has
been previously forwarded (i.e. if a forwarding pointer for it exists), we just update its reference in the root set.

When all the roots from the process are scanned, we pop the gray objects one by one and each object is scanned
for references. If the popped object refers to an object in the from-space that has not already been forwarded, the
newly found object is copied and pushed onto the gray stack. In the generational setting, an object is gray if it has
been copied to the old generation but not yet scanned for references to other objects. An object is fully processed and
becomes black when all its children are either black or gray.

Eventually the gray-stack is empty and the process is removed from the dirty process set and we pick the next
one to process its root set. During a collection cycle, processes may become dirty again only by receiving a message
allocated in the from-space. This effectively acts as a write barrier, albeit one with an extremely low cost; namely, it
requires one extra test for each entire send operation rather than a test for each memory write.

At the end of a minor collection cycle, we also have to look through the objects in the nursery to update references
still pointing to the from-space (or possibly copy the referred objects) since the mutator can create references from
objects in the nursery to objects in the from-space between collection stages. Because the nursery might contain
references to objects not copied to the old generation yet, a final check that the gray stack is empty is needed at the
end.

5.1.2. Actions during major garbage collection
If, during collection of the young generation, the old generation overflows, a flag (need major ) is set so that the

next garbage collection cycle will be a major one (cf. Fig. 8). A new page is linked to the old generation and added to
the free-list to allow the copying garbage collector of the young generation to finish its current minor collection cycle.

The major garbage collector (cf. Fig. 9) is a combination of a copying collector and a mark-sweep collector. The
copying part of the collector is the same as in the minor collection and copies objects from the young to the old
generation, linking in new pages to the old generation if needed. The old generation is collected by a mark-sweep
collector.

In the beginning of a major collection cycle, we set the gc major flag to let the message area gc procedure know
that this is a major collection and to clear the black-map. (The mark-bits in the black-map could also be cleared in the
sweep-phase.)

The major collection cycle then proceeds with the collector fetching the roots from the processes. As in the minor
collection, this is done by taking a snapshot of the root set one process at a time. While scanning the root set, reachable
objects in the young generation that are not already marked are copied to the old generation, pushed onto the gray
stack and immediately marked as live. Reachable objects in the old generation get the same treatment, except that they
are not copied.

When all the roots from one process have been scanned, we proceed to pop the gray objects as in the minor
collection. If the popped object refers to an object that has not already been marked as live, the referred object is
copied if it resides in the young generation, pushed onto the gray stack and marked.

Because the mutator (which allocates in the nursery) might, in the meantime, have created pointers to the message
area, we also scan the nursery. When all dirty processes have been processed and we are out of gray objects, we
proceed to the sweep phase. In the sweep phase, we simply scan the black-map and build a new free-list from the
unmarked areas. If an entire page turns out to be free, we release that page.

5.2. Interplay between the mutator and the collector

During a collection cycle, the collector might exceed its allowable (time- or work-based) quantum and be forced
to abort collection and yield to the mutator. As shown in Figs. 5 and 9, this happens in the beginning of for-
loops. The abort statement, which can be thought as a return, will return control to the main collection procedure
(message area gc) at the point where we call the update allocation limit procedure. This procedure calculates how
much the mutator is allowed to work.

In incremental tracing garbage collectors, the amount of work to be done in one collection cycle depends on the
amount of live data when a snapshot of the root set is taken. Since we can not know this quantity, we have to devise
a mechanism that allows us to control how much allocation the mutator is allowed to do between two collection
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stages. Relying on user-annotations to specify such a quantity is neither safe nor a “user-friendly” option in the typical
multi-thousand line application domain of Erlang.

To control how much the mutator should be allowed to work, we use an allocation limit (cf. Fig. 3). When the
mutator reaches this limit, the collector is invoked. This is a cheap way to control the interleaving and furthermore
imposes no additional overhead on the mutator. This is because, even in a non-incremental environment, the mutator
checks against a limit anyway (the end of the nursery, Nlimit). The allocation limit is updated using a calculated
estimate, depending on the type of the collector, as described in the following two subsections.

5.2.1. Update of the allocation limit in the work-based incremental collector

The underlying idea of how to update the allocation limit in the work-based collector is simple. Consider the case
of collecting the young generation, which is managed by a copying collector. If, during a collection stage, the mutator
allocates wM words of heap and the collector rescues from the from-space w words of live data (where, by rescue, in
this case we mean copy to the old generation), then for correctness it must of course be the case that wM ≤ w. After
each collection stage, the allocation limit is therefore updated to Ntop + w, where Ntop denotes the top of the nursery
(that is, its first free word; cf. Fig. 3). Note that this calculation is exact, rather than an estimate, as in the case of the
time-based collector of the following section.

In a minor collection, the area that we collect, the from-space, has the same size as the nursery, and we can therefore
guarantee that the collection cycle will end before the nursery is exhausted by mutator allocations. In fact, since this
is a young generation and most of newly allocated data tends to die young, the collection cycle is often able to collect
the from-space before a significant amount of allocation takes place in the nursery.

In a major collection, we collect the entire message area. However, the size of the nursery, where the mutator
allocates during a collection cycle, remains constant (Σ ). This means that, in order for the mutator to be allowed to
allocate w words, we have to process not only w words of live data, as in the minor collection, but a fraction of the
entire message area. We denote this fraction by wGC .

We formulate an equation that says that the fraction of work done in relation to the entire message area should be
the same or greater than the fraction w/Σ . In this equation, we have taken double the size of the old generation. This
is to guarantee that the sweep-phase is covered as well:

wGC

2 | old | +Σ
≥

w

Σ
.

By extracting wGC , we now get a formula to use when calculating how much work needs to be done to allow the
mutator to allocate w words:

wGC ≥ w

(
2 | old |

Σ
+ 1

)
.

After a major collection stage, Ntop is updated with w, as in the minor collection. During the major collection,
work is calculated when marking objects in the old generation (recall that objects are also marked when copied) and
in the sweep-phase.

5.2.2. Update of the allocation limit in the time-based incremental collector

In the time-based collector, the collector time quantum, denoted t , determines the time interval of each collection
stage. After this quantum expires, the collector is interrupted and the mutator is resumed.

To adjust the allocation limit dynamically, we keep track of the amount of work done during a collection stage.
We denote this by 1GC and, since this is a tracing collector, it is expressed in number of live words rescued, i.e.
processed by the collector:

1GC = rescued after GC stage − rescued before GC stage.

For simplicity, let us consider a minor collection. Assuming the worst-case scenario, namely that the entire from-space
of size Σ is live, at the end of a collection stage we conservatively estimate what fraction of the total collection we
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managed to do. Then, again conservatively, we estimate how many more collection stages it will take to complete the
collection cycle, provided that we are able to continue rescuing live data at the same rate:

GC stages =
Σ − rescued after GC stage

1GC
.

We now get:

wM =
f

GC stages

where f is the amount of free memory in the nursery. Thus, we can now update the allocation limit to Ntop + wM .
In a major collection, we use the same formula but, instead of Σ , we use the size of the entire message area.

5.3. Restarting a collection and termination

All collections start by calling message area gc. If we are in the middle of a collection cycle, the gc cycle flag
indicates this, and the collection proceeds by picking up the next dirty process. If the mutator has in the meantime
added new processes to the dirty process set, these processes will be considered. Note that this does not affect
termination, since the mutator always allocates in the nursery and these processes cannot contain any pointers to
objects in the from-space (or the old generation) that were not live at the beginning of the garbage collection cycle.

In the work-based collector, we are guaranteed that the collection cycle will finish before the nursery overflows.
This is because our update of the allocation limit is conservative. In the time-based collector, we have no such
guarantee, even though we try to make such a conservative estimate, and a mechanism to handle overflow (e.g.,
allocate a new nursery or extend the collection cycle) is required.

Note that the work-based collector can be interrupted while collecting the roots of a process (its stack and PCB).
The next collection stage will start over with the abandoned process and, since we measure work in the number of
words rescued and we never rescue the same object twice, we can guarantee that we will finish with the process in
due time. In the time-based collector, there is no such guarantee. With a sufficiently small t and a process with a large
enough stack or mailbox, the time-based collector could start over and over again on the same process without making
progress.

6. Our implementation

We have implemented the incremental garbage collection algorithm of the previous section in the Erlang/OTP
system. In this section, we describe a few design choices together with a number of effective optimizations.

6.1. Design choices

Sizes of different areas. We chose to implement the forwarding area as an array of constant size, currently the same
size as the from-space. Note that the incremental collection algorithm makes no assumptions about the size of pages,
and different pages can have different sizes. Pages can be allocated from the operating system upon need but, in order
to reduce the number of system calls, we pre-allocate an array of pages (each page being 32K words in size) in our
implementation. The pages that are not used by the old generation are kept in a linked list on the side.

User interaction. The value of w in the work-based collector is user-specified. However, regardless of the user setting,
we ensure that, in all collection stages, w is at least as big as the mutator need wM (wM ≤ w). The choice of w

naturally affects the pause times of the collector, as described in Section 7.2. In the time-based collector, the value of
t is also specified (in µs) by the user on the basis of the application’s demands.

Locking the PCB. In a single-threaded implementation, when we take a snapshot of a process, no work is being done
concurrently. This means that the process that is collected need not be interrupted or locked to have its snapshot taken.
In a multi-threaded implementation, locks or write-barriers on the PCB are required, but still a process does not need
to be suspended to have its snapshot taken. This is because all heap data in Erlang are immutable. Therefore, a process
can allocate on its process-local heap at the same time that the collector rescues objects from it. The points where
locking is required is when recoding the snapshot and when a process is removed from the dirty process set. At the
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latter point, the PCB of the process must be locked to ensure that the process does not become dirty (by a message
send) at the same time as when it is taken off the dirty process set.

Forwarding pointers. We chose to store forwarding pointers in a separate area to allow the mutator to access objects
in the from-space in between collection stages. Most copying collectors choose another approach, namely to store
the forwarding pointers in the from-space. In some implementations, this is done with an extra header word; others
overwrite the old copy with the forwarding pointer. (An extra header word is not an option in our case, as explained
previously.) Storing forwarding pointers in the place of objects would also be possible. However, it would require a
change in the mutator either to perform a test on each heap pointer de-reference and pay the corresponding cost, or to
systematically use Brooks-style indirection [4] and employ a read barrier mechanism to make sure that the mutator
never sees objects in the from-space (as, for example, in the Metronome [3]), a mechanism which also has a non-trivial
associated cost.

6.2. Atomic operations in the incremental collector

Even though our implementation of the incremental garbage collector respects its work or time quanta during the
majority of the collection cycle, there are a few phases where the collector cannot be interrupted. We call these parts
of the collection cycle atomic operations. Our atomic operations are:

• Swapping the nursery and the from-space. This operation has to be atomic because, in a multi-threaded setting, the
mutator may not be allocating concurrently with this operation.

• Collecting the root set of a process in the time-based collector. This also needs to be atomic, because we want to
guarantee that we will never get caught in an endless loop while considering the root set of a process.4 In practice,
collecting the root set from the stack and the PCB is very fast (excluding the mailbox, the PCB has a constant size)
and the fact that this operation is atomic does not jeopardize the real-time characteristics of our collector.

• Setting up and cleaning up auxiliary areas for the collection. As seen in Figs. 5 and 9, checking if the quantum
has expired occurs in the beginning of each loop. This means that all sequential pieces of code outside the loops
are effectively atomic operations. This includes setting, checking, and clearing flags and bitmaps before and after
collection, calculating the allocation limit, and some logging enforced by the runtime system. (In some cases, this
may result in a violation of the time quantum specified for the collector, although this extension is typically very
small; cf. Section 7.2.)

In our implementation, two phases of the collector have not been made incremental yet: (1) updating reference counts
of binaries and collecting those whose count drops to zero, and (2) the sweep-phase. Making these phases incremental
is straightforward. Recall that there is no need for an atomic sweep-phase, since the mutator never allocates in the old
generation.

6.3. Some optimizations

In the beginning of the major collection cycle, all processes in the system are put in the dirty process set, in a more
or less random order.5 However, each time a process receives a message, it is conceptually moved to last in the set (as
if it were reborn). This way, we keep the busiest processes last and scan them as late as possible, and the dirty process
set is effectively used as a queue. The rationale for wanting to postpone their processing is three-fold:

(1) to avoid repeated re-activation of message-exchanging processes;
(2) to allow processes to execute long enough for their data to become garbage;
(3) to give processes a chance to die before we take a snapshot of their root set; in this way, we might actually avoid

considering these processes at all.

Another technique that we use to postpone the processing of members of the dirty process set is to process the stack
of gray objects after we are finished with each process (instead of processing all processes in the dirty process set first
and then processing the complete gray stack).

4 In the work-based collector, there is no such risk; see the end of Section 5.3.
5 The order is actually determined by the age of the processes, oldest first.
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By incrementally taking partial snapshots of the root set, i.e., only one process at a time, we allow the remaining
processes to create more garbage as we collect the process at the head of the set. This means that we will most likely
collect more garbage than if a complete snapshot was taken at the beginning of the collection cycle.

In minor collections of the message area, we remember the top of the heap for each process and only consider as
part of their root set data that has been created, since the process was taken off the dirty process set.

When the collector rescues objects from the young generation to the old, it uses the free-list. But, since a new page
is allocated at the beginning of a major collection, we can cheaply allocate in this page by pointer bumping during the
collection.

Finally, a very important optimization is to have process-local garbage collections record pointers into the message
area in a remembered set. Note that it is not so common to have the collector rather than the mutator build the
remembered set. This way we avoid scanning the old generation of their local heaps. An unfortunate side-effect of
this optimization is that, since we do not actually scan the old generation of process-local heaps during root scanning,
but only the remembered sets, some of the rescued objects might be already dead at the start of the collection. An
object may therefore be kept in the message area for a number of collection cycles until a major process-local garbage
collection updates the remembered set of objects (or the process dies) and the next collection cycle of the message
area is triggered to finally remove the object. This, however, is a drawback inherent to all generational schemes.

7. Measurements

For the performance evaluation, we used synthetic benchmarks (the first two below) and three applications with a
high degree of concurrency from different domains:

worker Spawns a number of worker processes and waits for them to return their results. Each worker builds a data
structure in several steps, generating a large amount of local, temporary data. The final data structure is sent
to the parent process. This is an allocation-intensive program whose adversarial nature is a challenge for the
incremental garbage collector.

msort q A distributed implementation of merge sort. Each process receives a list, implicitly splits it into two sublists
by indexing into the original list, and spawns two new processes for sorting these lists (which are passed to the
processes as messages). Although this program takes a very small time to complete, we use it as a benchmark
because it spawns a rather large number of simultaneously live processes (cf. Table 1) having a root set which
is correspondingly large.

adhoc A framework for algorithms for genetics. The specific benchmark simulates a population of chromosomes
using processes and applies crossovers and mutations. The code AdHOC6 consists of about 8000 lines of
code.

yaws A high-performance multi-threaded HTTP Web server where each client is handled by a separate Erlang
process. Yaws7 contains about 4000 lines of code (excluding calls to functions in Erlang/OTP libraries such
as HTTP, SSL, etc.). We used httperf [18] to generate requests for Yaws.

mnesia The standard TPC-B database benchmark for the Mnesia distributed database system. Mnesia consists of
about 22,000 lines of code. The benchmark tries to complete as many transactions as possible in a given time
interval.

Some more information on these benchmarks (number of processes spawned and messages sent between them) is
shown in Table 1.

Fig. 10 shows the allocation rates and volume of live data during the runtime of the non-synthetic benchmarks. The
allocation rate unit is words allocated per second. Note that the scales on the y-axis differ between figures. It is clear
that these applications are allocation intensive and that their memory footprint is quite large, especially considering
the sizes of heap objects (Fig. 2). adhoc allocates on average 20 million words per second and has a footprint of
about the same size. This means that 20 million words of garbage are produced per second. The allocation rate and
footprint of yaws is somewhat more modest, but throughout the program more than 200 million words are allocated,

6 ADHOC: Adaptation of Hyper Objects for Classification.
7 YAWS : Yet Another Web Server; see yaws.hyber.org.
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Table 1
Concurrency characteristics of the bench-
marks

Benchmark Processes Messages
worker 403 1,650
msort q 16,383 49,193
adhoc 137 246,021
yaws 420 2,275,467
mnesia 1,109 2,892,855

(a) adhoc. (b) yaws. (c) mnesia.

Fig. 10. Allocation rates and live data for the three applications.

Table 2
Number of GCs when using the work-based incremental collector

Benchmark Local GCs Message area GCs
w = 2 w = 100 w = 1000

worker 6.7 K 2.5 M 98.7 K 10 K
msort q 357 79,190 1716 174
adhoc 1.1 M 54,934 3737 390
yaws 2.1 M 32,204 1393 290
mnesia 892 K 12,581 671 219

Table 3
Mutator times, total GC times and pause times using the non-incremental collector

Benchmark Total time (ms) Local GC (µs) Message area GC (µs)
Mutator Local GC MA GC Max Mean G.mean Max Mean G.mean

worker 3,591 2,756 1,146 7,673 395 68 178,916 89,811 77,634
msort q 174 3 29 577 9 4 16,263 9,807 11,646
adhoc 61,578 7,848 27 88 6 7 1,650 1,242 1,174
yaws 240,985 11,359 153 370 8 7 1,088 649 636
mnesia 53,276 4,487 88 4,722 4 5 1,413 485 458

and the maximum live data at any time is about 8.7 million words, so we can safely say that the garbage collector has
a fair amount of work to do here as well.

The performance evaluation was conducted on an Intel Xeon 2.4 GHz machine with 1 GB of RAM and 512 KB of
cache, running Linux. The 2.6.10 kernel has been enhanced with the perfctr driver [20], which provides access to
high-resolution performance monitoring counters on Linux and allows us to measure GC pause times in microseconds.

7.1. Runtime and collector performance

To provide a base line for our measurements, Table 3 shows the time spent in the mutator, garbage collection times,
and GC pause times for all benchmarks when using the non-incremental collector for the message area. Observe
that the first three columns of the table are in milliseconds, while the remaining ones are in microseconds. Table 4
confirms that the time spent in the mutator and in performing garbage collection of process-local heaps is effectively
not affected by using the incremental collector for the message area. Depending on the configuration, the overhead
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Table 4
Mutator times and total GC times (in ms) using the work-based incremental collector

Benchmark Mutator Local GC Message area (MA) GC
w = 2 w = 100 w = 1000

worker 3,560 2,798 6,445 6,296 6,341
msort q 164 3 54 34 33
adhoc 61,045 8,194 244 203 78
yaws 237,629 11,728 373 374 242
mnesia 52,906 4,439 182 164 156

Table 5
Pause times (in µs) for the incremental (work-based) collector

Benchmark Local GC (µs) Message area GC (µs)
Max Mean G.mean Max Mean G.mean w

worker 6,891 390 68 70,337 2 0 2
83,450 63 7 100
96,450 635 72 1000

msort q 611 8 4 3,089 0 0 2
3,142 19 11 100
4,511 204 110 1000

adhoc 125 6 7 1,029 3 2 2
1,051 53 46 100
1,233 202 158 1000

yaws 266 8 8 1,202 9 1 2
1,324 268 36 100
1,586 836 853 1000

mnesia 4,751 4 5 1,014 14 1 2
1,027 244 43 100
1,212 714 787 1000

for the incremental collector of the message area compared with the non-incremental collector ranges from a few
percent to 2.5–3 times for most programs. The overhead is higher (5.6 times) for worker, which is a program that
was constructed to spend a significant part of its time allocating in (and garbage collecting) the message area.

We have chosen Σ = 100K words, a deliberately small value to stress the incremental collector. A larger value of
Σ is likely to result in less time spent in garbage collection, since more data will become garbage between collections.

Considering total execution time, the performance of applications is practically unaffected by the extra overhead
of performing incremental GC in the message area. Even for the extreme case of worker, which performs 2.5 million
incremental garbage collections of the message area when w = 2 (cf. Table 2), its total execution time is only 1.7
times that with non-incremental GC.

7.2. Garbage collection pause times

Table 5 shows pause times for the incremental work-based collector using three different choices of w,
collecting 2, 100, and 1000 words, respectively. As expected, for most benchmarks, the incremental garbage collector
significantly lowers GC pause times, both their maximum and mean values (the columns titled ’G.mean’ show the
geometric mean of all pause times) compared with the non-incremental collector (cf. the last three columns of Table 3).
The maximum pause times of yaws (for w = 100 and 1000) are the only slight exception to this rule, and the only
explanation that we can offer for this behavior is that perhaps live message data is hard to come by in this benchmark.
The mean GC pause time values, in particular the geometric means, show a more consistent behavior. In fact, one can
see a correlation between the value of w and the order of pause times in microseconds.

The distribution of pause times (in microseconds) for the benchmarks using the work-based incremental collector
is shown in Fig. 11.8 The majority of collection stages are very fast, and only a very small fraction of the collections
might be a problem for a real-time application. On the other hand, a work-based collector whose notion of work is

8 mnesia is not included in Fig. 11, as its pause times do not show anything interesting.
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defined in terms of “words rescued” naturally cannot guarantee an upper limit on pause times, as live data to rescue
might be hard to come by.

A time-based incremental collector can, in principle, avoid this problem [3]. Care of course must be taken to detect
the case when the mutator is allocating faster than the collector can reclaim, and to take some appropriate action.
Fig. 12 (cf. also Table 2) shows counts of GC pauses when running three of the benchmark programs using the time-
based incremental garbage collector with a t value of 1 ms (1000 µs). As mentioned in Section 6.2, when needed, the
collector is allowed some small deadline extension, in order to possibly clean up after itself. This explains why there
is a small number of values above 1000 µs. Note that, in Fig. 12(b) and (c), the number of garbage collections (the
y-axis) is on a logarithmic scale.

7.3. Mutator utilization

The notion of mutator utilization, introduced by Cheng and Blelloch [8], is defined as the fraction of time that the
mutator executes in any time window.

Figs. 13 and 14 show mutator utilization for the programs that we used as benchmarks when using the work-
based incremental collector for different values of w. The two synthetic benchmarks exhibit interesting patterns of
utilization. As expected, the worker benchmark suffers from poor mutator utilization, since it is designed to be
allocation-demanding and to be a serious challenge for the incremental collector. The first interval of high utilization
is the time before the first collection is triggered, and the remaining two are periods after a collection cycle has
finished and there is free space left in the nursery that the mutator can use for its allocation needs. Similarly, the
mutator utilization of msort q drops significantly when live data in the message area is hard to come by, since each
collection stage will take more time, but the mutator’s work is still limited by the same w. On the other hand, the
mutator utilization of the three real applications is good — even for w = 2, although for yaws and mnesia this is
apparent only with the time axis stretched out. Fig. 15 shows the same data as Fig. 14(e), but only for a portion of the
total time needed to run the benchmark.

Mutator utilization for the time-based incremental collector is shown in Fig. 16. For both yaws (mainly) and
mnesia, the utilization using the time-based collector is slightly worse than that when using the work-based collector,
but quite satisfactory nevertheless. The mutator utilization for the synthetic msort q program is not so good. But, in
this case, this is partly explained by the fact that, although the t value is quite small (1 ms), it is significant compared
with the total execution time of the benchmark, which is less than half a second.

8. Related work

Runtime system organization. In the context of Java, several authors have suggested detecting thread-local objects
via escape analysis. The goal of escape analysis has been to identify, conservatively and at compile time, objects that
can only be accessed by their creating thread and allocate them on the thread-local stack, thereby avoiding the cost of
synchronization for these objects. In an early such work, Steensgaard [22] exploited the escape analysis of Ruf [21]
and suggested the use of thread-local heap chunks for non-escaping objects (which form the young generations) and
a shared old generation for all other data. However, because all static fields are roots for all memory areas, a global
rendezvous is required even for thread-local collections. In contrast, due to the pointer direction invariant that we
maintain in our system, all process-local collections can happen independently.

Thread-local heaps for Java, guided by information gathered by profiling, have also been advocated by Domani
et al. [12]. However, in a Java runtime system, pointers can be overwritten and hence pointers can be created between
any two areas in the system (for example, between different thread-local heaps). Thus, a write barrier mechanism
is needed to trap such pointers, which in turn can impose an unbounded amount of work during garbage collection.
A runtime system organization that avoids this problem was proposed by Jones and King [16] while this article
was undergoing refereeing. Their runtime system organization is guided by a compile-time escape analysis that
accommodates dynamic class loading and is similar to that of this article, not only because it is structured around
thread-local heaps and a shared memory area, but also because it maintains pointer directionality invariants which
allow for thread-local collections to occur independently and without the use of a write barrier mechanism that does
unbounded work.
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(a) worker (w = 2, w = 100, and w = 1000).

(b) msort q (w = 2, w = 100, and w = 1000).

(c) adhoc (w = 2, w = 100, and w = 1000).

(d) yaws (w = 2, w = 100, and w = 1000).

Fig. 11. Distribution of pause times (in µs) for the work-based incremental collector.
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(a) msort q (t = 1000 µs). (b) yaws (t = 1000 µs). (c) mnesia (t = 1000 µs).

Fig. 12. Counts of pause times (in µs) for the time-based incremental collector.

(a) worker (w = 2). (b) worker (w = 100). (c) worker (w = 1000).

(d) msort q (w = 2). (e) msort q (w = 100). (f) msort q (w = 1000).

Fig. 13. Mutator utilization of the work-based collector on synthetic benchmarks.

In the functional world, the closest relative to our work is the memory architecture proposed by Doligez and
Leroy [11], which uses thread-local allocation for immutable objects in Caml programs. Because thread-local heaps
contain only immutable objects, local garbage collections can be performed independently.

Memory management of Erlang programs. The soft real-time concerns of the Erlang language call for bounded-
time GC techniques. One such technique, based on a mark-sweep algorithm that takes advantage of the fact that
the heap in an Erlang system is unidirectional (i.e., is arranged so that the pointers point in only one direction), was
suggested by Armstrong and Virding [1]. However, their technique imposes a significant overhead and was never fully
implemented. Similarly, Larose and Feeley designed a near-real-time compacting collector [13] in the context of their
Gambit-C Scheme compiler. This garbage collector was intended to be used in the Etos (Erlang to Scheme) system,
but never made it to an Etos distribution.

Incremental and real-time GC techniques. In the context of other (concurrent) functional language
implementations, the challenge has been to achieve low GC latency without paying the full price in performance that
a guaranteed real-time garbage collector usually requires. Notable among techniques used in concurrent functional
languages are the quasi-real-time collector of Concurrent Caml Light [11], which combines a fast copying collector
for the thread-specific young generations with a non-disruptive concurrent mark-sweep collector for the old generation
(which is shared among all threads), and the recent work towards an incremental generational collector of Haskell [6],
which uses various optimizations to eliminate the (cost of the) write barrier.

Many concurrent garbage collectors for strict functional languages have also been proposed, based either on
incremental copying [4,14] or on replication [19] (see also Ref. [8] for a multi-processor version of one such collector).
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(a) adhoc (w = 2). (b) adhoc (w = 100). (c) adhoc (w = 1000).

(d) yaws (w = 2). (e) yaws (w = 100). (f) yaws (w = 1000).

(g) mnesia (w = 2). (h) mnesia (w = 100). (i) mnesia (w = 1000).

Fig. 14. Mutator utilization of the work-based collector on real-world programs.

Fig. 15. Mutator utilization of yaws (w = 100) shown in detail.

(a) msort q. (b) yaws. (c) mnesia.

Fig. 16. Mutator utilization for the time-based (t = 1000 µs) incremental collector.
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The main difference between them is that incremental collectors based on copying require a read barrier, while
collectors based on replication do not. Instead, they capitalize on the copying semantics of (pure) functional programs,
and incrementally replicate all accessible objects using a mutation log to bring the replicas up-to-date with changes
made by the mutator.

Because of the copying semantics of message passing, our collector is not only free to replicate objects, but is
also allowed to let the mutator access objects both in the from-space and in the to-space. Thus, in contrast to typical
replication collectors, we are not only free from having to preserve the invariant that the mutator only accesses objects
in the from-space (or having to keep a mutation log), but we can also avoid having to update the root set at the end
of the collection as an atomic step. By capitalizing on properties such as these, our incremental collector is able to
achieve significantly shorter pause times than those currently reported in the literature.

Similar to our case, Nettles and O’Toole [19] also recognized the problem of adding an extra word to small objects
to store the forwarding pointer and using indirection for all objects (despite the fact that their SML/NJ implementation
already had a header word in all heap objects that could be overwritten with a forwarding pointer — but indirection was
only rarely used). As they report in [19, Section 3.2], not being able to merge the header with the forwarding pointer
has a prohibitive cost. Our collector does not require a header word in objects, and its additional space requirement is
constant and limited to the area of forwarding pointers in the young generation (cf. Fig. 3).

An excellent discussion and theoretical analysis of the trade-offs between work-based and time-based incremental
collectors appears in a recent paper by Bacon et al. [3] describing the Metronome, a real-time garbage collector for
Java. Given the different semantics (copying vs. sharing) of concurrency in Erlang and Java, and the different compiler
and runtime system implementation technologies involved in Erlang/OTP and in Jikes RVM, it is very difficult to do
a fair comparison between the Metronome and our incremental collector. As a rather philosophical difference, we do
not ask the user to guide the incremental collector by specifying the maximum amount of simultaneously live data or
the peak allocation rate over the time interval of a garbage collection.9 More importantly, it appears that our system
is able to achieve significantly shorter pause times and better mutator utilization than the Metronome. We believe
that this can be attributed mostly to its memory allocation strategy, which is local-by-default. On the other hand, the
utilization of our collector is not as consistent as that of the Metronome for adversarial synthetic programs (e.g., the
worker program of Section 7) but, then again, we interleave the collector and the mutator in a much finer-grained
manner (for example, collecting just two words) or we force our collector to run in a considerably smaller collector
time quantum (1 ms or less vs. 22.2 ms, which the performance section of the Metronome paper [3] uses).

9. Concluding remarks

We have presented the details of a complete memory management scheme for the implementation of concurrent
programming languages using message passing. Besides being able to exploit the absence of mutable objects in our
setting, there are also other reasons why our experimental results are so encouraging. Chief among them is the fact that
we have attacked memory management from multiple directions rather than a single direction. We devised a runtime
system architecture that is tailored to the intended use of data, designed a flexible message analysis that can guide its
memory allocator, and implemented a carefully tuned incremental and generational garbage collector for its shared
data area.

By partitioning allocation into process-local heaps, we are not only able to achieve process isolation, but also
a guarantee that garbage collection of process-local areas can run concurrently with the rest of the system, without
jeopardizing its global responsiveness in highly concurrent applications. By devising an incremental garbage collector
for the global data area, which can be scheduled in a very fine-grained manner, we significantly avoid having a
point that can become a global bottleneck. In short, we see our work as the enabling technology for a scalable,
high-performance implementation on top of a multi-threaded or distributed shared memory implementation. We are
currently working towards such an implementation.

On a wider perspective, we believe that concurrency via message passing is fundamentally superior to the
presently more common shared data structure approach: among its advantages are isolation, scalability, and transparent

9 Work towards lifting this limitation is underway (private communication, October 2004).
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distribution.10 Independently of whether message passing will eventually dominate, our work can be of benefit even
for concurrent languages with sharing semantics when the immutability of certain objects can be established by other
means (for example, via the type system or by using static analysis).
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