
Message Analysis for Concurrent Programs
Using Message Passing

RICHARD CARLSSON, KONSTANTINOS SAGONAS, and
JESPER WILHELMSSON

Uppsala University

We describe an analysis-driven storage allocation scheme for concurrent systems that use message

passing with copying semantics. The basic principle is that in such a system, data which is not part

of any message does not need to be allocated in a shared data area. This allows for the deallocation

of thread-specific data without requiring global synchronization and often without even triggering

garbage collection. On the other hand, data that is part of a message should preferably be allocated

on a shared area since this allows for fast (O(1)) interprocess communication that does not require

actual copying. In the context of a dynamically typed, higher-order concurrent functional language,

we present a static message analysis which guides the allocation. As shown by our performance

evaluation, conducted using a production-quality language implementation, the analysis is effective

enough to discover most data which is to be used as a message, and to allow the allocation scheme

to combine the best performance characteristics of both a process-centric and a communal memory

architecture.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of

Programming Languages—Program analysis; D.3.3 [Programming Languages]: Language Con-

structs and Features—Concurrent programming structures, dynamic storage management; D.3.4

[Programming Languages]: Processors—Memory management (garbage collection), run-time en-
vironments; D.1.3 [Programming Techniques]: Concurrent Programming

General Terms: Languages, Measurement, Performance

Additional Key Words and Phrases: Static analysis, runtime systems, concurrent languages,

message passing, Erlang

This research was supported in part by Grant No. 621-2003-3442 from the Swedish Research
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1. INTRODUCTION

Many programming languages nowadays come with some form of built-in sup-
port for concurrent processes or threads. Depending on the concurrency model
of the language, interprocess communication takes place through synchro-
nized shared structures, as, for example, in Java, C#, and Modula-3; using
synchronous message passing on (usually, typed) channels as, for example,
in Concurrent ML and Concurrent Haskell; via rendezvous, as in Ada and
Concurrent C; using asynchronous message passing, as in Erlang; or through
shared logical variables, as in concurrent logic programming languages, includ-
ing Mozart/Oz. Most of these languages typically also require support for au-
tomatic memory management, usually implemented using a garbage collector.
So far, research in memory management has largely focused on the reclama-
tion aspects of these concurrent systems. As a result, by now many different
garbage collection techniques have been proposed and their characteristics are
well-known; see, for example, Jones and Lins [1996] or Wilson [1992] for ex-
cellent surveys of algorithms and techniques used in this area.

A less treated, albeit key issue in the design of a concurrent language im-
plementation is that of memory allocation. It is clear that, regardless of the
concurrency model of the language, there exist several different ways of struc-
turing the memory architecture of the runtime system. Perhaps surprisingly,
untill recently, there has not been any in-depth investigation of the performance
tradeoffs involved between these alternative architectures. In Johansson et al.
[2002], we provided the first detailed characterization of the advantages and
disadvantages of different memory architectures in a language where commu-
nication occurs through message passing.

The reasons for focusing on this type of system are both principled and prag-
matic. Pragmatic because we are involved in the development of a production-
quality system of this kind, the Erlang/OTP system, which is heavily used as
a platform for the development of highly concurrent (thousands of lightweight
processes) commercial applications. Principled because, despite current com-
mon practice, we hold that concurrency through (asynchronous) message pass-
ing with copying semantics is fundamentally superior to concurrency through
shared data structures. Considerably less locking is required, resulting in
higher performance and much better scalability. Furthermore, from a software
engineering perspective, the copying semantics offers isolation between pro-
cesses and makes distribution transparent, both important properties.

Our Contributions. Our first contribution, which motivates our static
program analysis, is in the area of runtime system organization. Based on the
properties of the two different memory architectures investigated in Johansson
et al. [2002], we describe two variants of a runtime system architecture that
has process-specific areas for the allocation of local data and a common area
for data that is shared between communicating processes (i.e., is part of some
message). Both variants of this hybrid architecture allow interprocess commu-
nication to occur without actual copying when shared memory is available, use
less overall space due to avoiding data replication, and allow frequent process-
local heap collections to take place without a need for global synchronization
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of processes, thus reducing the level of system irresponsiveness due to garbage
collection.

Our second and main contribution is to present in detail a static analysis,
called message analysis, the aim of which is to discover what data will be used
in messages so as to guide the memory allocation in the hybrid architecture.
One of the main advantages of the analysis is that it tends to perform well even
when it is run on a single module at a time, rather than on the whole program
(although, of course, this is also possible). We present a mini-Erlang language
with a formal semantics and sketch proofs of correctness and safety for the
message analysis in terms of this. The analysis does not rely on the presence
of type information and does not sacrifice precision when handling list types,
despite its simplistic representation of data structures. Our evaluation shows
that although the analysis has cubic worst-case time complexity, it tends to be
fast enough in practice.

Finally, we have implemented the aforementioned architecture and analysis
in the context of an industrial-strength implementation used for highly con-
current time-critical applications, and we report in detail on the effectiveness
of the analysis, the overhead it incurs on compilation times, and the time and
space performance of the resulting system.

Summary of Contents. We begin by introducing Erlang and briefly reviewing
the pros and cons of alternative heap architectures for concurrent languages.
Section 3 goes into more detail about implementation choices in the hybrid
architecture. Section 4 describes the message analysis and its relation to es-
cape analysis, and Section 5 explains how the information is used to rewrite the
program. Section 6 contains experimental results measuring both the effective-
ness of the analysis and its power in terms of improving execution performance
and memory usage. Finally, Section 7 discusses related work and Section 8
concludes.

2. PRELIMINARIES

2.1 Erlang and Core Erlang

Erlang [Armstrong et al. 1996] is a strict, dynamically typed functional pro-
gramming language with support for concurrency, distribution, communication,
fault-tolerance, on-the-fly code replacement, and automatic memory manage-
ment. Erlang was designed to ease the programming of large soft real-time
control systems like those commonly developed in the telecommunications in-
dustry. It has thus far been used quite successfully by Ericsson and other com-
panies around the world to construct large (several hundred thousand lines of
code) commercial applications.

Erlang’s basic data types are atoms (symbols), numbers (floats and arbitrary
precision integers), and process identifiers; compound data types are lists and
tuples. Programs consist of function definitions organized in modules. There is
no destructive assignment of variables or data. Because recursion is the only
means to express iteration in Erlang, tail call optimization is a required feature
of Erlang implementations.
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Processes in Erlang are extremely lightweight (lighter than operating sys-
tem threads), their number in typical applications can be large (in some cases,
up to 50,000 processes on a single node), and their memory requirements vary
dynamically. Erlang’s concurrency primitives—spawn, ‘!’ (send), and receive—
allow a process to spawn new processes and communicate with other processes
through asynchronous message passing. Any value can be sent as a message
and the recipient may be located on any machine in a network. Each process has
a mailbox, essentially a message queue, where all messages sent to the process
will arrive. Message selection from the mailbox is done by pattern matching.
In send operations, the receiver is specified by its process identifier, regardless
of where it is located, making distribution all but invisible. To support robust
systems, a process can register to receive a message if some other process ter-
minates. Erlang provides mechanisms for allowing a process to timeout while
waiting for messages and a catch/throw-style exception mechanism for error
handling.

Erlang is often used in “five nines” high-availability (i.e., 99.999% of the time
available) systems, where down-time is required to be less than five minutes per
year. Such systems cannot be taken down, upgraded, and restarted when soft-
ware patches and upgrades arrive, since that would not respect the availability
requirement. Consequently, Erlang systems support upgrading code while the
system is running, a mechanism known as dynamic code replacement. In more
detail, this means that any loaded module can at any time be replaced by simply
loading new code for that module. All calls to the module will then be redirected
to the new version of the code. Processes executing code in the older version will
remain alive, and will not migrate to the new code until they execute an inter-
module call to the module (possibly first having returned from the old code).1

For example, a typical server process will be executing an event loop which, af-
ter handling a single event, will make a self-recursive tail call qualified with the
module name, ensuring a switch whenever new code is loaded. While dynamic
code replacement is considered an essential feature for real-world Erlang ap-
plications, it constitutes a major obstacle for whole-program and crossmodule
analyses; currently, modules are always compiled independently of one another.

Core Erlang [Carlsson et al. 2000; Carlsson 2001] is the official core lan-
guage for Erlang, developed to facilitate compilation, analysis, verification, and
semantics-preserving transformations of Erlang programs. When compiling a
module, the compiler reduces the Erlang code to Core Erlang as an intermedi-
ate form on which static analyses and optimizations may be performed before
low-level code is produced. While Erlang has quite unusual and complicated
variable scoping rules, fixed-order evaluation, and does not allow function def-
initions to be nested, Core Erlang is similar to the untyped lambda calculus
with let- and letrec-bindings, and imposes no restrictions on the evaluation
order of arguments.

1In order to cleanly migrate to new code, no return addresses to old code may remain on the stack.

The Erlang runtime system contains support for killing processes that are still depending on old

code, when necessary.
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Fig. 1. Different runtime system architectures for concurrent languages.

2.2 Heap Architectures for Concurrent Languages Using Message Passing

In Johansson et al. [2002] we examined three different runtime system architec-
tures for concurrent language implementations: one process-centric, where each
process allocates and manages its private memory area and all messages have
to be copied between processes; one communal, where all processes get to share
the same heap; and finally, one a hybrid runtime system architecture, where
each process has a private heap for local data while a shared heap is used for
data sent as messages. Figure 1 depicts the memory areas of these architectures
when three processes are currently in the system: Shaded areas show currently
unused memory; each process has exactly one process control block (PCB); and
the filled shapes and arrows in Figure 1(c) represent messages and pointers.

For each architecture, we have already discussed its advantages and disad-
vantages, focusing on the impact of the architecture on the speed of interprocess
communication and garbage collection (GC). We briefly review them now:

Process-centric. This is currently the default configuration of Erlang/OTP.
Interprocess communication requires copying of messages, that is, it is an O(n)
operation where n is the message size. Memory fragmentation tends to be high.
Advantages are that the garbage collection times and pauses are expected to
be small (as the root set need only consist of the stack of the process requiring
collection), and upon termination of a process, its allocated memory area can be
reclaimed immediately. This latter property in turn encourages the use of pro-
cesses as a form of programmer-controlled regions: A computation that requires
a lot of auxiliary space can be performed in a separate process that sends its
result as a message to its consumer and then dies. This memory architecture
has recently also been exploited in the context of Java; see Domani et al. [2002].

Communal. The biggest advantage is very fast (O(1)) interprocess communi-
cation (simply consisting of passing a pointer to the receiving process), reduced
memory requirements due to message sharing, and low fragmentation. Dis-
advantages include having to consider the stacks of all processes as root set
(resulting in increased GC latency), and possibly, poor cache performance due
to the processes’ data being interleaved on the shared heap. Furthermore, com-
munal architecture does not scale well to a multithreaded or multiprocessor
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implementation since locking would be required in order to garbage collect the
shared memory in a parallel setting; see, for example, Cheng and Blelloch
[2001] for a recent treatment of the subject.

Hybrid. An architecture that tries to combine the advantages of the previous
two architectures: Interprocess communication can be fast and GC latency for
the frequent collections of the process-local heaps is expected to be small. No
locking is required for garbage collection of the local heaps, and the pressure
on the shared heap is reduced so that it does not need to be garbage collected as
often. Also, as in the process-centric architecture, when a process terminates,
its local heap can be reclaimed by simply attaching it to a free-list.

However, to take advantage of this architecture the system should be able to
distinguish between data that is process-local and data which is to be shared,
that is, used as messages. This can be achieved through user annotations on
the source code by dynamically monitoring the creation of data as proposed
by Domani et al. [2002], or by a static analysis as we describe in Section 4.

Note that these runtime system architectures are applicable to all concurrent
systems that use message passing. Their advantages and disadvantages do not
in any way depend on characteristics of the Erlang language or its current
implementation.

3. THE HYBRID ARCHITECTURE

A key property of the hybrid architecture is the ability to garbage collect process-
local heaps individually without looking at the shared heap. In a multithreaded
system, this allows the collection of local heaps without any locking or synchro-
nization. If pointers from the shared area to the local heaps were allowed, these
would then have to be traced so that what they point to would be considered
live during a local collection. This could be achieved by a read or write barrier,
which typically incurs a nonnegligible overhead on the overall runtime. The
alternative, which is our choice, is to maintain as an invariant of the runtime
system that there are no pointers from the shared area to the local heaps, nor
from one process-local area to another; see Figure 1(c).

This pointer-directionality invariant is also crucial for our choice of memory
allocation strategy, since it makes it easy to test at runtime whether or not a
data structure resides in the shared area by performing a simple O(1) pointer
comparison (there are several possible implementations which allow this test to
be done in constant time; in ours, the message area is kept as a single contiguous
block of memory, making the test very cheap).

3.1 Allocation Strategies

There are two main strategies for the implementation of allocation and message
passing in a hybrid architecture:

Local Allocation of Nonmessages. Only data that is known to not be part of
a message may be allocated on the process-local heap, while all other data is
allocated on the shared heap. This gives O(1) process communication for pro-
cesses residing on the same node since all possible messages are guaranteed to
already be in the shared area, but utilization of the local heaps depends on the

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



Message Analysis for Concurrent Programs Using Message Passing • 721

ability to decide through program analysis which data is definitely not shared.
This approach is used by Steensgaard [2000]. Because it is not generally pos-
sible to determine what will become part of a message, underapproximation is
necessary. In the worst case, nothing is allocated on the process-local heaps, and
the behaviour of the hybrid architecture with this allocation strategy reduces
to that of the communal architecture. Because Erlang modules are typically
separately compiled and any module can be replaced at any time during pro-
gram execution, any data that might be passed across module boundaries will,
in general, have to be regarded as having escaped. Thus, this strategy is less
likely to make good use of both the local heaps and the shared heap.

Shared Allocation of Possible Messages. In this case, data that is likely to be
part of a message is allocated speculatively on the shared heap, and all other
data on the process-local heaps. This requires that the message operands of all
send operations are wrapped with a copy-on-demand operation which verifies
that the message resides in the shared area (as noted above, this is an O(1)
operation in our system), and otherwise copies the locally allocated parts to the
shared heap. Furthermore, if program analysis can determine that the message
is already on the shared heap, the test can be statically eliminated. Without
such analysis, the behaviour will be similar to that of the process-centric archi-
tecture, except that data which is repeatedly passed from one process to another
will only be copied once. On the other hand, if the analysis overapproximates
too much, most of the data will be allocated on the shared heap and we will
not benefit from the process-local heaps; we could even introduce unnecessary
copying as further explained in Section 5.

We have chosen to implement and evaluate the second strategy, which, to
the best of our knowledge, has not been studied previously.

Two other allocation strategies are also possible, both requiring that mes-
sages can be copied on demand. The first is to allocate data shared by default,
but to allocate probable nonmessage data on the process-local heaps. However,
if there are no indications at all as to whether a piece of data will become part of
a message or not, it generally seems better to assume that it is local, as in our se-
lected strategy, rather than shared since in most programs the majority of data
is used exclusively by the process that creates it. The second variation is to allo-
cate data on the shared heap only if it can be proved that it will always be used
in a message, and on the local heap otherwise. This is more conservative than
our selected strategy and as such, likely to miss opportunities to avoid copying.
Whether the performance differences between this strategy and our selected
one are significant in practice is not clear, and ideally, we would want to experi-
mentally measure the performance tradeoffs of all these allocation alternatives.
As doing so is not at all trivial, we have opted instead to implement the strategy
that our intuition tells us is likely to perform best, given the constraints imposed
by our setting (e.g., the requirement for separate compilation of modules).

3.2 Copying of Messages

In order to use a strategy that allocates on the local heap by default, we
must be prepared to copy (parts of) a message as necessary to ensure the
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pointer-directionality invariant. Since we do not know how much of the message
needs to be copied and how much already resides in the shared area, we can-
not easily ensure that the space available on the shared heap will be sufficient
before we begin to copy data.

At the start of copying, we only know the size of the topmost constructor
of the message. We allocate space in the message area for this constructor.
Nonpointer data is simply copied to the allocated space, and all pointer fields
are initialized to nil. The latter is necessary because the message object might be
scanned as part of a garbage collection before all its children have been copied.
The copying routine is then executed again for each child. When space for a
child has been allocated and initialized, the child will update the corresponding
pointer field of the parent before proceeding to copy its own children (it should be
noted that our current implementation of copying was written mainly for speed
and does not preserve sharing in the original message nor redirect pointers
from the local heap to the shared heap).

If there is not enough memory on the shared heap at some point, the garbage
collector is called on-the-fly to make room. If a (mostly) copying garbage collector
is used, as is currently the case in our system, it will move those parts of
the message that have already been copied, including the parent constructor.
Furthermore, in a global collection both source and destination will be moved.
Since garbage collection might occur at any time, all local pointer variables have
to be updated after a child has been copied. To keep the pointers up to date, two
stacks are used during message copying: one for storing all destination pointers,
and one for the source pointers. The source stack is updated when the sending
process is garbage collected (in a global collection), and the destination stack is
used as a root set (and is thus updated) in the collection of the shared heap.

An alternative algorithm first scans the message to find the size of the re-
quired memory. This simplifies copying because garbage collection cannot occur
in midcopy. However, our measurements showed that this algorithm (which is
used in the process-centric system) has very bad performance in the hybrid sys-
tem. The reason is that in the hybrid system, each pointer needs to be tested
in order to determine whether the object pointed to is already in the shared
heap (in which case, it will not be copied). When separating the size measure-
ment from the copying, this test must be done twice for each pointer (once when
measuring and once when copying), rather than only once.

4. MESSAGE ANALYSIS

To use the hybrid architecture without user annotations on what is to be al-
located on the process-local heap and the shared heap, respectively, program
analysis is necessary. If data were to be allocated on the shared heap by de-
fault, we would need to single out the data guaranteed to not be included in
any message, so that it could be allocated on the local heap. This amounts to
escape analysis of process-local data; see, for example, Blanchet [2003], Bogda
and Hölzle [1999], and Choi et al. [2003].

However, if data is by default allocated on the local heaps, we instead want
to identify data that is likely to be part of a message, so that it can be directly
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Fig. 2. A mini-Erlang language.

allocated in the shared area in order to avoid the copying operation when the
message is eventually sent. We will refer to this form of analysis as message
analysis. Note that because copying will always be invoked in the rewritten
program whenever some part of a message might be residing on a process-
local heap (see Section 5), both under- and overapproximation of the set of
runtime message constructors is, in itself, safe. In our current implementation
of message analysis we usually overapproximate the set of constructors that
could be messages, but this is not a requirement—underapproximation will
have no ill effects apart from increased copying and the unnecessary use of
local heaps for message data.

4.1 The Analyzed Language

Although our analyses have been implemented for the complete Core Erlang
language, for the purposes of this article, the details of Core Erlang are unim-
portant. To keep the exposition simple, we instead define a sufficiently powerful
language of A-Normal forms [Flanagan et al. 1993], shown in Figure 2, with
the relevant semantics of the core language (strict, higher-order, dynamically
typed, and without destructive updates) and operators for asynchronous send
(‘!’), blocking receive, and process spawning.

A program is any expression e that does not contain free variables. It is as-
sumed that all variables in the program are uniquely named, that is, no variable
name appears in more than one let or letrec. We also make the simplifying as-
sumption that all primitive operations return atomic values and do not cause
their parameters to escape the process; however, our actual implementation
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does not rely on this assumption,2 and the extension to handle general primops
is straightforward.

Atoms (symbols) are written within single quotes; the atoms ‘true’ and
‘false’ are used to represent Boolean values. The empty list (nil) is written
[]. Tuple constructors are written {v1, . . . , vn} for all n ≥ 0, and list construc-
tors are written v1:v2. Each constructor in the program, as well as each call
site and lambda expression, is given a unique label; the special labels xcall,
xlambda, message, and unsafe are used to represent program points external
to the currently analyzed program. The xcall and xlambda labels are standard
for control flow analysis [Shivers 1988], while message and unsafe are particu-
lar to our message analysis; their use is explained in the following. We generally
leave out the labels when they can be deduced from context.

Operators hd and tl select the first (head) and second (tail) element, respec-
tively, of a list constructor. Since the language is dynamically typed, the second
argument of a list constructor v1:v2 might not always be a list, but in typical
Erlang programs the vast majority of lists are proper. An operator elementk

selects the k:th element of a tuple if the tuple has at least k elements.
The spawn operator starts evaluation of the application (v1 v2) as a separate

process and then immediately returns, yielding a new unique process identi-
fier (“pid”). When the evaluation of a process terminates, the final result is
discarded. The send operator v1! v2 sends message v2 asynchronously to the
process identified by pid v1, returning v2 as result. Each process is assumed
to have an unbounded queue where incoming messages are stored until ex-
tracted. The receive operator extracts the oldest message from the queue, or
blocks if the queue is empty. This is a simple but sufficiently general model of
the concurrent semantics of Erlang.

A slightly nonstandard big-step operational semantics for the analyzed lan-
guage is shown in Figure 3, in which constructed data is labeled with its point
of origin. Labels have no effect upon operations on data, such as equivalence
comparisons (a standard semantics is achieved by disregarding the labels al-
together). Note that for specifying the complete Erlang language (including
concurrency), big-step semantics would not be suitable, but it is sufficient for
this article and has several advantages, such as being concise and readable.
On the other hand, big-step semantics does not let us reason formally about
nonterminating programs.

For our purposes, it is only necessary to describe the behaviour of a single
process at a time; therefore, the state σ is simply the set of shared terms (for
simplicity, σ has been left out where it is not affected). We let T↓s denote the
subset T of Term restricted to constructors whose labels are in s. Sending a
message adds the sent term to the shared area, and receiving a message yields

2In our actual implementation, we need to handle the fact that Erlang supports arbitrary-precision

integers (“bignums”) which are boxed and stored on the heap unless they fit into a single word,

including tag bits. Furthermore, on 32-bit machines, floating-point numbers are always boxed. As

a consequence, the analysis has to conservatively assume that most arithmetic operations possibly

return a heap-allocated object. In our context, this somewhat limits the number of runtime copying

checks that can be statically eliminated.
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Fig. 3. A nonstandard operational semantics for the language of Figure. 2.

an arbitrary element in Term↓{message} as result;3 see the [Send] and [Receive]
rules. Spawning a new process adds both arguments to the shared area and

3Since we only study a single process, other processes in the system can put arbitrary terms in the

shared area at any time, but those terms are not of interest unless they are received by the current

process.
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yields a fresh process identifier; see the [Spawn] rule (we leave out all details
about how process identifiers are created; they are constants and are not heap-
allocated.)

We write [x1 �→ y1, . . . , xn �→ yn] for the partial function which maps xi to yi

for i ∈ [1, n], and ρ+ρ ′ for the extension of one mapping by another. Recursion is
handled by finite unfolding in the vein of The Definition of Standard ML [Milner
et al. 1997]: A closure is represented by a triple 〈 f , ρ , ρ ′〉, where f is a lambda
expression, ρ is the original environment, and ρ ′ is the recursive component
which is unrolled by the function rec at least once before each lambda applica-
tion; see the rules [Letrec] and [Call]. The free variables of an expression e are
given by the function free[[e]].

4.2 General Framework

The analyses we have thus far implemented are first-order dataflow analyses,
and are best understood as extensions of Shivers’ 0CFA control flow analy-
sis [1988]. Indeed, we assume that control flow analysis has been done, so that:

—The label xcall represents all call sites external to the analyzed program, and
the label xlambda represents all possible external lambdas.

—There is a mapping calls: LabelB → P(Label�) that maps each call site label
(including xcall) to the corresponding set of possible lambda expression labels
(which may include xlambda), which constitutes an upper bound of the call
graph of the program.

In particular, any lambda closure that might be accessed through the value
returned by program e or that might be passed as an argument from within e
to an external function “escapes” from e and could be called from an external
site. Furthermore, an external lambda expression (i.e., not in e) could be called
from a point in e if a closure is passed from an external call site to a function
in e or is received by e in a message.

Note that in the context of program analysis, we allow a program to be any
arbitrary expression; if a program contains free variables, they may assume any
values from Term. This is in contrast to the previous section, where programs
could only be closed expressions.

Although higher-order control flow analysis could be directly integrated with
the dataflow analyses, the presentation is greatly simplified by the assumption
that we have already determined the static call graph for the program.

The analysis domain V is defined as

v ∈ V ::= (s, �)
| (s, 〈v1, . . . , vn〉) n ≥ 0,

where s ∈ P(LabelH ).

Intuitively, our abstract values represent sets of constructor trees where each
node in a tree is annotated with the set of source code labels that could possibly
be the origin of an actual constructor at that point. An abstract node (S, �)
represents the set of all possible subtrees where each node is annotated with
set S.
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Fig. 4. The concretization mapping γ :: V → P(Term).

Define � to be the smallest relation on V such that

(s1, w) � (s2, �)
(s1, 〈u1, . . . , un〉) � (s2, 〈v1, . . . , vm〉)

if labels (s1, w) ⊆ s2

if n ≤ m ∧ s1 ⊆ s2 ∧ ∀ j ∈ [1, n] : u j � vj ,

where

labels (s, �) = s

labels (s, 〈〉) = s

labels (s, 〈v1, . . . , vn〉) = ⋃n
i=1labels vi ∪ s .

It is then easy to see that 〈V , �〉 is an upper semilattice with top element
(LabelH , �), and bottom element (∅, 〈〉).

The concretization function γ :: V → P(Term) is defined as the smallest
mapping fulfilling the requirements shown in Figure 4 (typically, given program
e and abstract value v, we would also restrict the set γ (v) to such terms that are
consistent with the labeled constructors and lambda expressions in e). For the
sake of readability, we have omitted all details about the recursive components
of closures from the definition.4

LEMMA. v1 � v2 ⇒ γ (v1) ⊆ γ (v2)

The proof is easy and is left to the reader.
Because lists are typically much more common than other recursive data

structures, we give them a nonstandard treatment in order to achieve decent
precision by simple means; this is further explained next.

We now specify the main equations of the constraint system for the analyses.
Let Val be a mapping from variables to abstract values, and In be a mapping
from call site labels to abstract values. Figure 5 gives the definitions of the
expression analysis functions Vv[[·]] and Ve[[·]], and the bound-value analysis
function Vb[[·]] In particular, note that:

—The rule for receive simply returns ⊥ since we do not need to track values
that are guaranteed to reside in the shared area already.

4Like the second component of closures, these are also mappings from variable names to terms.
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Fig. 5. The main analysis functions.
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—A spawn has an effect similar to a send operation. The function application
is evaluated by the spawned process, and the arguments will reside in the
shared heap at the time of the application.

The following constraints complete the general framework:

(1) ∀λ ∈ Label� : Out(λ) = Ve[[e]], when λ is the label of (fn x.e)λ.

(2) ∀β ∈ LabelB : ∀λ ∈ calls(β) : Out(λ) � In(β) ∧ Vv[[v2]] � Val(x), when β is
the label of (v1 v2)β and λ is the label of (fn x.e)λ.

(3) For each expression let x = b in e in the program: Vb[[b]] � Val(x), and for
each letrec x1 = f1, . . . , xn = fn in e: ∀i ∈ [1, n] : Vb[[ fi]] � Val(xi) (note
that this is the only place where Vb[[·]] is used).

It is easy to verify from the definitions that the constraint system has a
least-fixpoint solution due to monotonicity.

To see what happens with lists, suppose z = Vb[[v1:δv2]] = cons δ x y =
({δ}, 〈x〉)� y . If y is (s, 〈v, . . .〉), then the set of top-level constructor labels of z is
s∪{δ}. Furthermore, head z will yield x �v, while tail z yields z itself (note that
x � head z and y � tail z). Thus, even if a list is of constant length, such as [A,
B, C], we will not be able to make distinctions between individual elements;
however, we can still separate levels of nesting, as in lists of lists, etc. In the vast
majority of Erlang programs, cons cells are used exclusively for constructing
proper lists, so we do not consider the loss of precision for nonproper lists to be
an issue.

It is straightforward to extend this framework to simultaneously perform a
more precise control flow analysis than that of Shivers [1988] (which only uses
sets of labels), building the call graph as we go, but doing so here would cloud
the issues of this article. Also, Erlang programs tend to use fewer higher-order
functions in comparison with typical programs in, for example, Scheme or ML,
so we expect that the improvements to the determined call graphs would be
insignificant in practice.

4.3 Termination, Complexity, and Correctness of the Framework

Finding the least solution for Val and In to the aforementioned constraint sys-
tem for some program by fixpoint iteration will, however, not terminate because
of infinite chains such as ({l }, 〈〉) � ({l }, 〈 ({l }, 〈〉) 〉) � . . . To ensure termination,
we use a variant of depth-k limiting.

We define the limiting operator θk as:

θk(s, �) = (s, �)

θk(s, 〈〉) = (s, 〈〉)
θk(s, 〈v1, . . . , vn〉) = (s, 〈θk−1(v1), . . . , θk−1(vn)〉), if k > 0

θk (s, w) = (labels (s, w), �), if k ≤ 0.

The constraints given in Section 4.2 are modified, as follows, for some fixed k:

(2) ∀β ∈ LabelB : ∀λ ∈ calls(β) : θk(Out(λ)) � In(β) ∧ θk(Vv[[v2]]) � Val(x), when
β is the label of (v1 v2)β and λ is the label of (fn x.e)λ.
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Note that without the special treatment of list constructors, this form of ap-
proximation would generally lose too much information; in particular, recursion
over a list would confuse the spine constructors with the elements of the same
list. In essence, we have a “poor man’s escape analysis on lists” for a dynami-
cally typed language,5 or, if we view the abstract values as annotated types, a
simple soft typing system. Better precision could be achieved by a graph rep-
resentation of data, as, for example, in the storage use analysis of Serrano and
Feeley [1996]. Our current approximation was chosen to fit easily into our ex-
isting analysis framework and to allow us to explore the usefulness of message
analysis as a tool for guiding the allocation of data.

It is well known that control flow analysis has cubic worst-case time com-
plexity (see, for example, Heintze and McAllester [1997]). Since our analyses
are based on the standard 0CFA, and the terms of our domain have a fixed
maximum depth imposed by the previously described limiting, we get the same
cubic time worst-case complexity. Our experience, however, is that the analysis
is in practice quite fast; see also Section 6.2.

Finally, we propose that any solution to the constraint system is a safe ap-
proximation of all possible executions of the program:

THEOREM 1. If (Val, In) is a solution to the aforementioned constraint sys-
tem for program e, where e has no free variables, then for every variable x in
e, if ρ(x) = t in any judgement in any derivation of [ ] � e, σ → t ′, σ ′, then
t ∈ γ (Val(x)) ∨ t ∈ Term↓{message}.

PROOF. By structural induction over the derivations of [ ] � e, σ → t, σ ′ (the
semantics as specified in Figure 3 is nondeterministic, e.g., with respect to
received terms, so there may be several derivations).

Having established our general framework, we now show in the following two
sections how it can be instantiated to obtain an escape analysis and a message
analysis, respectively.

4.4 Escape Analysis

As already mentioned, in a scheme where data is allocated on the shared heap
by default, the analysis needs to determine what heap-allocated data cannot
escape the creating process, or conversely, what data can possibly escape. Fol-
lowing Shivers [1988], this can be done in the preceeding framework by let-
ting Escaped represent the set of all escaping values, and adding the following
straightforward rules to the system (mainly shown here for easy comparison
with our message analysis):

(1) In(xcall) � Escaped;

(2) Vv[[v2]] � Escaped for all call sites (v1 v2)β such that xlambda ∈ calls(β);

(3) Vv[[v2]] � Escaped for all send operators v1! v2; and

(4) Vv[[v1]] � Escaped and Vv[[v2]] � Escaped for every spawn (v1 v2)β .

5The escape analysis on lists of Park and Goldberg [1992] requires type information.
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After the fixpoint iteration converges, if the label of a data constructor oper-
ation (including lambda expressions) in the program is not in labels(Escaped),
the value produced by that operation does not escape the process (a more com-
mon formulation of escape analysis is to discover data that does not escape a
particular function invocation and might therefore be stack-allocated. For the
purposes of this article, however, we are only concerned with whether or not
process-local storage can be used for the data).

4.5 Message Analysis

Since we have chosen to allocate data on the local heap by default, we want
the message analysis to tell us which constructors may become part of some
message. Furthermore, we need to be able to see whether or not a value might
contain data which has been constructed on the local heap, but at a point outside
the code being analyzed (recall that we typically compile one module at a time).

For this purpose, we let the label unsafe denote any such external constructor,
and let Message represent the set of all possible messages.

For the message analysis, we need the following rules:

(1) ({unsafe}, �) � In(β) for all call sites (v1 v2)β such that xlambda ∈ calls(β);

(2) ∀λ ∈ calls(xcall ) : ({unsafe}, �) � Val(x), when λ is the label of (fn x.e)λ;

(3) Vv[[v2]] � Message for every v1! v2 in the program; and

(4) Vv[[v1]] � Message and Vv[[v2]] � Message for every spawn (v1 v2)β in the
program.

Note that since the result of a receive is necessarily a message, we know
that it already resides in the shared area, and is therefore not unsafe.

The main difference from the escape analysis of the previous section, apart
from also tracking unknown inputs, is that we do not care about values that
escape the current process unless through explicit message passing (the closure
and argument used in a spawn can be viewed as being “sent” to the new process).
If a value escapes our scrutiny by being passed to some external function, we
generally underapproximate by assuming that it will not be used as a message.
However, the rest of the analysis always overapproximates the set of possible
message constructors. Due to the way the message analysis information will be
used, this is not a problem.

If we did not underapproximate in the case of external calls, a lot of data
would be allocated on the shared heap although in fact never sent as message,
much like when the strategy is to allocate only guaranteed nonmessages locally;
the majority of functions in typical code do not cause their arguments to be sent
as messages. Although we have not done so yet, it would be straightforward to
extend the message analysis to a multipass analysis that stores information for
every analyzed module about which function arguments may become part of a
message. Such information would be particularly useful for certain often-used
library functions that do perform message passing. However, note that since
both over- and underapproximation is allowed, it is not critical that modules
are analyzed in any particular order, or that the information is up-to-date at
all times, for example, when loading new code for a module.
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4.6 Precision and Soundness of the Message Analysis

If (Val, In, Message) is a solution to the message analysis constraint system for
program e, then the following properties hold:

THEOREM 2. If δ is the label of a data constructor in e, and δ �∈
labels(Message), then a term created at δ can only become part of a message
if it escapes from e.

PROOF SKETCH. For any final state σ ′ such that δ ∈ σ ′, assume that no term
labeled δ escapes from e and prove a contradiction, that is, that δ �∈ σ ′, by
induction over the derivations of [ ] � e, σ → t ′, σ ′.

THEOREM 3. For each variable x in e, if unsafe �∈ labels(Val(x)), then if δ

is the label of some subterm of a value bound to x in any execution of e, and
δ �∈ labels(Val(x)), then δ = message.

PROOF SKETCH. Assume that for some δ �∈ labels(Val(x)), δ is the label of a
subterm of some t such that ρ(x) = t in some derivation of [ ] � e, σ → t ′, σ ′,
and δ �= message. Prove a contradiction, that is, that either δ ∈ labels(Val(x)) or
δ cannot be the label of a subterm of any such t. Note that if some δ �= message
is not in e, then a value labeled δ can only enter e by being passed from an
external call site or by being returned from a call to an external lambda. In
both cases, if the value is bound to some x, then unsafe will be in labels(Val(x)).
On the other hand, if unsafe �∈ labels(Val(x)), then it follows from Theorem 1
that δ ∈ labels(Val(x)).

Theorem 2 tells us that it is reasonable to consider only those constructors
whose labels are in labels(Message) to be likely messages, while Theorem 3
allows us to eliminate copying operations as we rewrite allocation points. As
we will see in the following section, only the latter is required for safety.

5. USING THE ANALYSIS INFORMATION

Achieving shared allocation of possible messages when allocating on the
process-local heaps by default requires two things:

(1) Each data constructor in the program, such that a value constructed at that
point is likely to be a part of a message, is rewritten so that the allocation
will be performed on the shared heap. All other data is allocated on the local
heap.

(2) For all arguments of the rewritten constructors and for the message argu-
ment of each send operation, if the value is not guaranteed to completely
reside on the shared heap already (i.e., if it could contain data constructed at
points other than those rewritten in the previous step—such as the unsafe
external constructor), the argument is wrapped in a call to copy in order to
maintain the pointer-directionality invariant.6

6In terms of the semantics of Figure 3, the copy operation replaces all the labels of any term

with message. Note that if the top-level label of a term is already message, then by the pointer-

directionality invariant, all its subterms are labeled message.
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In effect, with this scheme we attempt to push the runtime copying oper-
ations backwards past as many allocation points as possible (or suitable). It
may then occur that because of overapproximation, some constructors are allo-
cated in the shared area although they will not in fact be part of any message
at runtime. As a consequence, if an argument to such a misplaced constructor
has been created on the local heap (e.g., by a function in some other module),
that argument will need to be copied to the shared area in order to preserve the
pointer-directionality invariant, but the work is wasted because the constructed
term is not in fact shared (in comparison, the process-centric system will only
copy exactly the data being passed in messages, but it can never avoid copying
like the hybrid system, and it will repeat the copying if the data is resent to
another process). If such redundant copying becomes a problem in practice (see
Section 6.3 for an example), probabilistic methods or profiling data could likely
be used to improve the precision of the analysis.

For comparison, when allocating on the shared heap by default, each data
constructor in the program (such that a value constructed at that point is guar-
anteed by escape analysis not to be part of any message) can simply be rewritten
so that the allocation will be performed on the local heap. With this scheme,
unless the analysis is able to report some constructors as nonescaping, the
process-local heaps will not be used at all.

5.1 Differences Between Escape Analysis and Message Analysis: An Example

Figure 6 shows an Erlang program using two processes (the line numbers are
not part of the program). The main function takes three equal-length lists, re-
verses each element of the third list, combines the lists into a single list of
nested tuples, filters this list using a Boolean function test defined in some
other module mod, and finally, sends the second component of each element in
the resulting list to a newly spawned child process which echoes the received
values to the standard output.

The corresponding Core Erlang code looks rather similar. Translation to the
language of this article is straightforward, and mainly consists of expanding
pattern matching, currying functions, and identifying applications of primi-
tives such as hd, tl, !, elementk , receive, etc., and primitive operations like >,
is nil, and is cons. Taking into account the Erlang requirement that the code
of any individual module can be replaced at any time, functions residing in other
modules, as in the calls to mod:test(X) and io:fwrite(. . . ), are conservatively
treated as unknown program parameters by the analyses.

For this example, escape analysis can determine that the lists constructed in
the functions map, zipwith3, and filter (lines 14, 22, and 27, respectively) are
guaranteed to not escape the executing process, and may be locally allocated.
However, since the elements created by the lambda in line 9 are being passed
to an unknown function via filter, they must be conservatively viewed as
escaping, and so must the lists constructed by reverse.

On the other hand, the message analysis recognizes that only the innermost
of the tuple constructors in line 9, plus the lists constructed by reverse, and the
closure passed to spawn (line 5), can possibly be messages. Thus, creating these
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Fig. 6. Erlang program example.

directly on the shared message area could reduce copying if data is allocated
locally by default. However, the argument Y is created externally (it is taken
from the elements of Ys), and might need to be copied to maintain the pointer-
directionality invariant. In contrast, the argument Z is the result from a call to
reverse and can be guaranteed to not require further copying if we rewrite the
list constructor in line 18 as

[
S
copy(X) | As ],

that is, to push the copying operation past the constructors of the reversed list,
which are created on the shared message area. The lambda body in line 9 can
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then be rewritten to

{ X, {S
copy(Y), Z } },

where the outer tuple is locally allocated (note that the copy wrappers will not
copy data that already resides on the shared message area; see Section 3.2).

6. PERFORMANCE EVALUATION

The performance evaluation was conducted using Erlang/OTP R9 (Release 9).7

Its default runtime system architecture was process-centric. The communal
(“shared heap”) architecture is also available and can be selected by specify-
ing the -shared flag when the system is started. Based on R9, we also imple-
mented the modifications needed for the hybrid architecture using the local-by-
default allocation strategy,8 and included the aforementioned message anal-
ysis and transformation as a final stage on the Core Erlang representation
in the Erlang/OTP compiler. By default, the compiler generates byte code from
which native code can also be generated. A compiler option invokes the message
analysis.

All benchmarks were run on a dual processor Intel Xeon 2.4 GHz machine
with 1 GB of RAM and 512 KB of cache per processor, running Linux.

6.1 The Benchmarks

The performance evaluation was based on the following benchmarks:

msort A distributed implementation of merge sort. Each process receives a
list of integers, splits it into two sublists, and spawns two new pro-
cesses for sorting the new lists. Since new lists are continously cre-
ated, data received in one message is rarely passed on in another.

msort q An alternative implementation of distributed merge sort. Sublist
splitting is not done by creating new lists, but by indexing into the
original list. However, if message data cannot be shared (as in the
process-centric system), the algorithm uses quadratic space.

worker Spawns a number of worker processes and waits for them to return
their results. Each worker builds a data structure in several steps,
generating a large amount of local temporary data. The final data
structure is sent to the parent process.

nag Creates a ring of 1000 processes. Each process sends out a large mes-
sage (about 200 words) which will be passed on 200 steps in the ring.
The nag is designed to test the behavior of memory architectures un-
der different program characteristics. It comes in two flavours: same
and keep. In the same variant, a single message is first created and
distributed to all processes, and is then continuously received and re-
sent. In the keep variant, each process keeps received messages live

7Available as open source from www.erlang.org and commercially from www.erlang.com.
8The hybrid architecture will be available in Erlang/OTP R10 and can be selected by specifying the

-hybrid command line option at system startup time.
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Table I. Compilation Times (secs) and Percentage of Time Spent in Analysis

Benchmark Sizes To Byte Code To Native Code

Benchmark Modules Lines Byte code Time Analysis Time Analysis

msort 1 76 2,216 0.2 5% 0.8 1%

worker 1 96 2,624 0.2 9% 1.0 2%

nag 1 157 3,596 0.2 9% 1.1 2%

eddie 8 3,310 63,224 1.2 26% 17.7 1.9%

eddie m 1 3,417 55,152 1.5 33% 18.3 2.7%

mnesia 29 24,216 427,136 9.9 34% 163.0 2%

prettyprint 1 1,068 10,796 0.5 30% 9.9 1.8%

pseudoknot 1 3,315 72,696 2.4 67% 7.2 22%

inline 1 2,762 37,400 1.3 44% 11.2 4.9%

by storing them in a list, and explicitly creates a new copy of each
message before passing it on.

eddie A medium-sized application (≈2,500 lines of code in 8 modules) im-
plementing an HTTP parser which handles http-get requests from a
client.

eddie m The eddie modules merged into one single module.

mnesia The standard TPC-B database benchmark for the Mnesia distributed
database system [Mattsson et al. 1999]. Mnesia consists of about
22,000 lines of Erlang code in 29 modules. The benchmark tries to
complete as many transactions as possible in a given time quantum.
Unlike the other programs, the performance measure is not the run-
time, but the average throughput per second.

6.2 Compilation Overhead due to the Analysis

Table I shows sizes and compilation times for the benchmarks for compilation
both to byte code and native code. Erlang modules are separately compiled, and
most source code files are small (less than 1,000 lines). The numbers for eddie
and mnesia show the total code size, byte code size, and compilation time for
all their modules. We have also included the nonconcurrent programs prettypr,
pseudoknot, and inline to show the overhead of the analysis on the compilation
of single-module applications which contain functions of quite large size.

Using a depth of k = 4 (our current default) in the byte code compiler, the
analysis takes, on average, 25% of the compilation time with a minimum of 5%.
However, the byte code compiler is fast and relatively simplistic; for example, it
does not in itself perform any global data flow analyses. Including the message
analysis as a stage in the more advanced HiPE native code compiler [Johansson
et al. 2000; Pettersson et al. 2002], its portion of the compilation time is below
5% in all benchmarks except pseudoknot (22%), which is a hard program for
this kind of depth-k-based analysis since it mostly consists of functions return-
ing large nested tuples (all heap-allocated). Changing the depth to k = 3, the
percentage drops to 13%, and with k = 2, to 9.6%.

More importantly, we can see from Table I that the analysis appears to scale
well when performed on the whole program (eddie m) rather than on a single
module at a time (eddie).
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Table II. Effectiveness of Message Analysis in the Hybrid System

Messages Messages Copied k Words k Words Words Copied

Benchmark Sent w/o an. with an. prealloc. sent w/o an. with an. Overapprox.

msort 49,149 100.0% 0.0% 1,169 1,202 98.6% 3.33% 2.1%

msort q 49,149 66.7% 0.0% 451 60,210 0.8% 0.07% 2.6%

worker 802 100.0% 0.0% 19,995 19.984 100.0% 0.01% 0.1%

nag (same) 203,000 100.0% 0.5% 606 40,827 2.0% 0.05% −23.9%

nag (keep) 203,000 100.0% 0.5% 40,606 40,627 100.0% 0.05% 0.0%

eddie 40,028 100.0% 0.1% 200 421 81.0% 33.47% 0.0%

eddie m 40,028 100.0% 0.1% 260 421 81.0% 19.22% 0.0%

mnesia 1,061,290 100.0% 25.2% 5,461 11,203 77.8% 33.68% 10.5%

6.3 Effectiveness of the Message Analysis

Table II shows the amounts of messages sent and words copied between the
process-local heaps and the message area in the hybrid system, both when the
message analysis is not used to guide allocation and when it is. A message is
counted as copied if at least some part of it needs to be copied to the shared
heap at send time.9 We also show the amount of words allocated directly on the
shared heap when the analysis is enabled (referred to as “words preallocated”).
“Words sent” shows the total size of sent messages, while “words copied” are
the percentages of words that actually needed copying. The final column shows
the amount of overapproximation, which is computed as the number of words
preallocated compared to the difference in copying with and without analysis.

In the hybrid system, the number of words copied also includes forced copying
when allocating message data (see Section 5), and can thus be nonzero even if
no copying happens at send time. Note that in a process-centric system, the
number of words copied between process heaps is exactly the number of words
sent. Also, in the communal system, all data resides in the same shared area so
no copying is done per se (an analysis that trivially classifies all data as shared
will have the same effect for the hybrid system); however, storing data in shared
memory can have a higher cost in a multithreaded implementation.

It is clear from Table II that, especially when a large amount of data is
being sent, using message analysis can avoid much of the copying. Even in the
real-world programs eddie and mnesia, the amount of copying is reduced from
about 80% to 33% when modules are separately compiled, and when compiling
eddie as a single module (eddie m), only 19% of the sent data is copied. We can,
furthermore, see that message analysis typically causes a significant portion of
the message data to be preallocated on the shared heap (58–100%) with only
a small amount of overapproximation (the amount of “overapproximation” for
the nag (same) benchmark is actually negative due to sharing).

In the mnesia benchmark, however, we encountered for the first (and so far,
only) time a problematic case of overapproximation. The numbers shown in
Tables II and III were measured when only 28 out of 29 modules were compiled
using message analysis. When additionally compiling the final module with

9When the analysis is not used, the number of messages sent without any copying can be nonzero

only if some messages are resent exactly as they are (without any wrapper). This rarely happens

in nonsynthetic programs.
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Fig. 7. Total heap usage (k words).

the analysis enabled, the number of words copied almost doubled. Studying the
code in question as well as the effects of the analysis, we discovered that while
a small fraction of the overapproximation might be avoided by a more precise
analysis (e.g., distingushing call contexts), the main problem could be attributed
to the style of programming: The rogue module was written so that whenever
an error occurred or an “info query” was received, large parts of otherwise local
data was passed in a message to the outside world. This meant that many data
structures that were normally used only for internal bookkeeping (and were
thus constantly being updated) were considered “probable messages” by the
analysis and were therefore being created on the shared heap, sometimes also
triggering further copying of subterms. The situation could be compared to how
a C programmer, unaware of pointer analysis and aliasing, may write code that
a compiler cannot optimize. In our case, a programmer cannot be completely
oblivious of the memory model and needs to keep local data separated from
intended message data in order to get the best performance.

6.4 Memory Utilization

Recall that our main goal is not only to put all data in the shared area, but to
also use the local heaps as much as possible for data that does not need to be
shared while avoiding the poor space behaviour that the process-centric system
can display. Figure 7 shows total heap usage in the different systems in terms
of the maximum heap sizes at garbage collection time10 (note that the Y axis is
in logarithmic scale). All heaps used the same initial size for these tests.

The heap utilization numbers can be studied in more detail in Table III. Since
the hybrid system without message analysis only copies to the shared area the
data that actually must be there on demand, the “plain hybrid” columns give
us an approximate lower bound on the utilization of the shared heap. They also
show how the reuse of message data can reduce the sizes of the local heaps as
compared to the process-centric system. In general, the table shows that the
hybrid system can use significantly less local memory than the process-centric

10Heap usage of eddie m is not shown, as it is identical to that of eddie
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Table III. Heap Utilization (k words)

Plain Hybrid With Analysis

Benchmark Process-centric Communal Local Shared Local Shared Total

msort 114 142 87 126 87 122 208

msort q 163,493 192 96 163 96 167 262

worker 69,815 38,041 36,452 16,200 25,033 13,774 38,808

nag (same) 4,207 37 31 343 8 30 38

nag (keep) 39,558 20,924 542 20,924 10 21,473 21,483

eddie 42 69 41 12 39 9 47

mnesia 79 60 32 62 32 56 88

system and less shared memory than the communal system, although the total
amount of used memory can be larger than in the latter; this is a natural conse-
quence of wanting to separate local memory from shared memory. Furthermore,
using message analysis can improve the memory behaviour of the hybrid sys-
tem, sometimes even reducing the size of the shared area (figures showing the
heap usage of individual benchmarks can be found in Appendix A).

A seemingly anomalous detail in Table III is that in the nag (same) bench-
mark, the use of the shared area is much higher without the analysis than with
it. This is somewhat counterintuitive, as without the analysis, nothing is preal-
located on the shared area. The reason for this behavior is that when a message
is copied-on-demand, the original reference is not updated so as to point to the
shared heap. We did not originally think this detail would be worthwhile to
handle. It turns out, however, that in a program like this one, where effectively,
a multicast is performed which distributes a single message to all processes, if
the message was first created on the local heap it will then be copied repeatedly
onto the shared heap—in this case, yielding 1000 copies (enabling the message
analysis eliminates this effect for this particular program, but does not make
the hybrid system immune to it). If the implementation of message copying had
been modified so that it also updated pointers within the original message to
point to the shared copy instead, such repeated deep-copying could have been
avoided (only the topmost constructor would be copied each time). However,
if the message is a large object without internal pointers, such as an Erlang
“binary” (a chunk of bytes) or an array of integers in another language, there
are no internal pointers to update. In this case, one way of avoiding repeated
copying might be to cache the reference to the last sent message and its loca-
tion on the shared heap; a more far-reaching change would be to add indirection
pointers to the runtime system (see e.g., Brooks [1984]).

Note that although we do not show the figures here, the process-centric sys-
tem can suffer from high fragmentation consisting of the unused space between
the heap top and the stack top on each process—often, up to 50% of the allocated
memory area. With a large number of processes (e.g., the msort benchmark uses
more than 16,000), a lot of memory is allocated without being used. Using the
hybrid system with message analysis can avoid fragmentation by reducing the
local heap sizes (in comparison, the communal system allows temporary data
created by one process to be quickly garbage collected so that the memory can
be used by another process, keeping the total memory usage low; however, in a
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Fig. 8. Normalized runtimes.

multithreaded implementation we do not want processes to share their scratch
memories).

6.5 Runtime Performance

Figure 8 shows the execution times for the benchmarks11 excluding time
spent in garbage collection and normalized with respect to the process-centric
architecture. Garbage collection times are excluded to avoid possible side
effects from the different garbage collection policies that the different systems
employ (although for these benchmarks, including GC times does not change
the overall picture in any significant way; see Appendix B.) The hybrid system,
when the analysis is enabled, tends to follow the behaviour of the communal
system, avoiding the excessive copying times that the process-centric system
sometimes suffers from.

Note that in a single-processor setting, the hybrid system can never hope
to be faster than both the process-centric system and the communal system
for the same benchmark. When a relatively small part of the total runtime is
spent in message passing (as in msort), the process-centric system tends to
win because of its simplicity, which results in better usage of machine regis-
ters and fewer runtime tests. When a lot of data is being passed in messages,
the communal architecture usually wins because of its fast message passing
and the improved cache behaviour due to sharing. The hybrid system tries to
combine these properties into a memory architecture which is scalable in a mul-
tithreaded or distributed shared memory environment; as such, these numbers
are quite promising.

A more detailed breakdown of the execution times for these benchmarks
(including time spent in garbage collection) can be found in Appendix B.

7. RELATIONSHIP TO RELATED WORK

We first discuss related work in the areas of runtime system organization and
static analysis and then we try to hopefully shed some more light on message
analysis by comparing it with escape analysis and region inference.

11Times for mnesia are not shown, as runtimes do not make sense for this benchmark.
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Runtime System Organization. Our hybrid memory model is inspired in part
by a runtime system architecture described by Doligez and Leroy [1993] that
uses thread-specific areas for young generations and a shared data area for
the old generation. It also shares characteristics with the architecture of Kaf-
feOS [Back et al. 2000], an operating system providing isolation, resource man-
agement, and sharing for execution of Java programs. An approach using escape
analysis to guide a memory management system with thread-specific heaps for
Java programs was described by Steensgaard [2000].

Static Analysis. As previously mentioned, our analysis framework can be
best understood as an extension of Shivers’ [1988] control flow analysis and
is closely related to the frameworks used by escape analyses. Escape analysis
was introduced in 1992 by Park and Goldberg, and further refined by Deutsch
[1997] and Blanchet [1998]. Till quite recently, its main application has been
to permit stack allocation of data in functional languages. In 1999, Blanchet
extended his analysis to handle assignments and applied it to the Java lan-
guage, allocating objects on the stack and also eliminating synchronization on
objects that do not escape their creating thread; see the recent journal arti-
cle by Blanchet [2003]. Concurrently with Blanchet’s work, Bogda and Hölzle
[1999] used a variant of escape analysis to similarly remove unnecessary syn-
chronization in Java programs by finding objects that are reachable only by a
single thread, and Choi et al. [2003] used a reachability-graph-based escape
analysis for the same purposes. Ruf [2000] focused on synchronization removal
by regarding only properties over the whole lifetimes of objects, tracking the
flow of values through the global state, but sacrificing precision within meth-
ods and especially in the presence of recursion. It should be noted that with
the exception of Choi et al. [2003], all these escape analyses rely heavily on
static type information, and in general, sacrifice precision in the presence of
recursive data structures. Recursive data structures are extremely common in
Erlang and type information is not available in our context.

Message Analysis vs. Escape Analysis. Although our message analysis is in
some respects similar to escape analysis, we note that it addresses the prob-
lem of using analysis to guide the memory allocator in its reverse direction.
Rather than proving that a piece of data does not escape its context (which,
more often than not, requires a whole-program analysis), it identifies data that
will probably be used in a message, enabling a speculative optimization that
allocates this data in the shared area of the hybrid system and eliminating the
need for copying at send time, thus making it possible to remove some runtime
checks altogether. While in our case it is the copying semantics of the Erlang
language that allows us to use the message analysis to guide the memory allo-
cator, we think that even languages with sharing semantics could benefit from
such a memory architecture when the immutability of data structures can be
established, for example, by static analysis or a type system.

Message Analysis vs. Region Inference. Notice that it is also possible to view
the hybrid runtime system architecture as a system with a shared heap and sep-
arate regions for each process. Region-based memory management, a concept
reinvented many times but first introduced in Ross [1967], typically allocates
objects in separate areas according to their lifetimes. The compiler, guided by a
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Fig. 9. Heap size improvement due to message analysis.

static analysis called region inference that was introduced by Tofte and Talpin
[1994], is responsible for generating code that creates and deallocates these
areas. The simplest form of region inference places objects in areas whose life-
times coincide with that of their creating functions. In this respect, we can view
the process-specific heaps of the hybrid model as regions whose lifetime coin-
cides with that of the top-level function invocation of each process, and see our
message analysis as a region inference algorithm for discovering data which
potentially outlives its creating process.

8. CONCLUDING REMARKS

For the purpose of employing a hybrid runtime system architecture which is
tailored to the intended use of data in a high-level concurrent language using
message passing, we have devised and formalized an effective and practical
static analysis, called message analysis, that can be used to guide the allocation
of data. As shown by the experimental evaluation, the analysis is, in practice,
both fast and precise enough to discover most of the data that will become part
of some message.

For a single-processor setting, what our work has shown is that the hybrid ar-
chitecture, even without analysis, is a reasonable architecture in itself. The use
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Fig. 10. Performance of individual benchmarks.

of message analysis further improves its time and space performance. More-
over, the resulting system is the enabling technology for a high-performance
implementation on top of a multithreaded or distributed shared memory im-
plementation. We are currently working towards such an implementation.

Communication through message passing with copying semantics, even
when the communicating processes or threads have access to shared memory
(as on a single machine or in a cluster), has many advantages over the cur-
rently more common shared-datastructure approach; these include isolation,
portability, scalability, and reduced complexity for the programmer. With the
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Fig. 11. Execution time percentages for the different systems.

formidable explosion of network programming in recent years, many different
but similar techniques based on message passing have become buzzwords, such
as RMI, SOAP, and XML-RPC. We believe that message passing—regardless
of acronym—is here to stay,12 and that programming environments and lan-
guages with direct support for message passing will ultimately be common.
Runtime systems will need to be adapted to this method of programming.

APPENDIX

A. HEAP MEMORY USAGE

Figure 9 shows the effect of message analysis-guided heap allocation on the
sizes of heaps in the hybrid system. While the changes in the allocation pattern
are in some cases not big enough to overly affect the heap enlargement policy, as
in msort, and are rarely as extreme as in nag (same), message analysis typically
makes the hybrid system almost as memory-efficient as the communal system
(see Figure 7). We have left out msort q since it behaves very much like msort
in this respect.

B. EXECUTION TIMES

Figure 10 shows execution time details for the benchmarks (see also Figure 8).
It must be noted that the current (copying, two-generational) garbage collector

12Some might say “back with a vengeance.”
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is tailored to the process-centric system only, and for instance, does not work
well with large amounts of live data. Work on better garbage collection for the
hybrid system is underway, but is not expected to be ready any time soon.

Figure 11 makes it easier to see, for each benchmark, where the time is spent
in the different systems. It is, for example, clear that message analysis removes
much of the copying overhead in the hybrid system.
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