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Abstract

Manual memory management is error prone. Some of the errors it causes, in par-
ticular memory leaks and dangling pointers, are hard to find. Manual memory
management becomes even harder when concurrency enters the picture. It there-
fore gets more and more important to overcome the problems of manual memory
management in concurrent software as the interest in these applications increases
with the development of new, multi-threaded, hardware.

To ease the implementation of concurrent software many programming lan-
guages these days come with automatic memory management and support for con-
currency. This support, called the concurrency model of the language, comes in
many flavors (shared data structures, message passing, etc.). The performance and
scalability of applications implemented using such programming languages de-
pends on the concurrency model, the memory architecture, and the memory man-
ager used by the language. It is therefore important to investigate how different
memory architectures and memory management schemes affect the implementa-
tion of concurrent software and what performance tradeoffs are involved.

This thesis investigates ways of efficiently implementing the memory archi-
tecture and memory manager in a concurrent programming language. The con-
currency model which we explore is based on message passing with copying se-
mantics. We start by presenting the implementation of three different memory
architectures for concurrent software and give a detailed characterization of their
pros and cons regarding message passing and efficiency in terms of memory man-
agement. The issue examined is whether to use private memory for all processes
in a program or if there may be benefits in sharing all or parts of the memory. In
one of the architectures looked at, called hybrid, a static analysis called message
analysis is used to guide the allocation of message data.

Because the hybrid architecture is the enabling technology for a scalable multi-
threaded implementation, we then focus on the hybrid architecture and investigate
how to manage the memory using different garbage collection techniques. We
present pros and cons of these techniques and discuss their characteristics and their
performance in concurrent applications. Finally our experiences from turning the
garbage collector incremental are presented. The effectiveness of the incremental
collector is compared to the non-incremental version. On a wide range of bench-
marks, the incremental collector we present is able to sustain high mutator utiliza-
tion (about 80% during collection cycles) at a low cost.

This work is implemented in an industrial-strength implementation of the con-
current functional programming language ERLANG. Our eventual goal is to use
the hybrid architecture and the incremental garbage collector as the basis for an
efficient multi-threaded implementation of ERLANG. The work described in this
thesis is a big step in that direction.
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1 INTRODUCTION

1 Introduction

Once upon a time, computer systems were single-user, single-task machines. They
could only serve one user and executed only one program at the same time. In
the late 50’s time sharing systems were introduced where multiple users could
work concurrently on a single machine. The machine could still only execute one
program at the same time, but with the use of a timing mechanism to swap between
different programs the illusion of concurrency was obtained. In the 60’s the first
multi-processor computers were built by connecting several computers to a shared
memory. For a long time large scale servers were the only place where the need
for concurrency was recognized, but as computer systems evolved, concurrency
found its way into new areas. In the 80’s operating systems for personal computers
introduced “multitasking”, with which a single user could run several programs
concurrently on cheap hardware. In the 90’s, communication networks like those
of cell phones and the Internet became an important part of our everyday life. Both
are examples of concurrent application domains.

Today, general purpose processors are moving fast towards highly-concurrent
computing. Several companies have during the last year announced multi-threaded
and even multi-core CPUs. For example, Sun has released the UltraSPARC IV
CPU with two threads built in and is about to release the Niagara, a CPU with
eight processor cores built in and 32 threads. Intel’s Pentium 4 is available with
hyper-threading and Intel has announced that multi-core CPUs will be used for
their desktop and notebook computers. Most major CPU manufacturers have an-
nounced some dual- or multi-core CPU to be released in the next few years.

It is no longer a matter of running different programs concurrently, now we
want to run different parts of the same program concurrently. The fast development
in the hardware industry has created a gap between hardware and software. The
multi-threaded hardware is out there, but hardly any software takes advantage of it.
This means that concurrency and support for multi-threading are important issues
to consider in software development.

1.1 Concurrency models

There are several programming languages today with support for concurrency. This
support is called the concurrency model of the language. It consists, among other
things, of methods to pass information between different parts of a program, some-
thing that is needed to build concurrent software.

A few examples of concurrency models are synchronized shared data structures
as used for example in Java and C#; synchronous message passing as used for
example in Concurrent ML and Concurrent Haskell; rendevouz as used for example
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1 INTRODUCTION

in Ada and Concurrent C; and asynchronous message passing as used for example
in ERLANG.

In concurrency models where the communication occurs through shared data
structures, synchronization trough locks is required to protect the shared objects
from concurrent modifications. Unless it is decided that certain objects are thread-
local with the use of, for example, an escape analysis [8], potentially all objects
need locking. These lock-intensive concurrency models do not efficiently scale to
large number of processors. Compared to shared data structures, a concurrency
model based on message passing has the advantage that it requires fewer locks and
can therefore scale better to large number of processors.

Synchronization through shared data structures is the most common technique
today. However, a number of different techniques based on message passing has
evolved after the advance in communication networks during the last decade. To-
gether with the widespread use of networks, network programming became com-
mon and message passing is a concurrency model suitable for that kind of soft-
ware. Efficient concurrency through message passing requires a system, or more
precisely a memory architecture, that is designed with fast message passing in
mind.

Paper A investigates different memory architectures and their impact on the
performance of concurrent applications and presents methods for faster concur-
rency in programming languages using message passing.

1.2 The context of this work

This work has been performed in the context of Erlang/OTP, an industrial-strength
implementation of the functional programming language ERLANG [2].

ERLANG is a strict, dynamically typed programming language with support for
concurrency, communication, and distribution. ERLANG was designed to ease the
implementation of concurrent control systems commonly developed by the data-
and tele-communications industry. Its implementation, Erlang/OTP, is equipped
with standard components for telecommunication applications (an ASN.1 com-
piler, the Mnesia distributed database, servers, state machines, process monitors,
tools for load balancing, etc.), standard interfaces such as CORBA and XML, and
a variety of communication protocols (e.g., HTTP, FTP, SMTP, etc.). In ERLANG,
there is no destructive assignment of variables or data, and the first occurrence of a
variable is its binding instance.

Processes in ERLANG are extremely light-weight (significantly lighter than OS
threads) and the amount of processes in typical programs is large (in some cases
more than 100,000 processes on a single node). ERLANG’s concurrency primi-
tives — spawn, “!” (send), and receive — allow a process to spawn new
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1 INTRODUCTION

processes and communicate with other processes through asynchronous message
passing with copying semantics. Any data value can be sent as a message and the
recipient may be located on any machine on the network.

Erlang/OTP has so far been used successfully both by Ericsson and by other
companies around the world (e.g., T-Mobile, Nortel Networks) to develop large
(several hundred thousand lines of code) commercial applications.

Prior to the work described in this thesis, the only memory architecture avail-
able to Erlang/OTP was based on private memory areas for each process. The
memory area where a process allocates its data is called the heap, and therefore we
refer to this architecture as the private heap architecture.

In the private heap architecture, sending a message to another process involves
copying the message data to the receiver’s heap. This is an O(n) operation, where
n is the size of the message. With such a memory architecture, sending large mes-
sages is expensive. In fact it is considered so expensive that even the programming
guidelines at www.erlang.org advise against using message passing with large
messages. The cost of sending messages has made it bad programming style to use
the language constructs the way they were intended when ERLANG was designed.

Since communication between processes is an important operation in concur-
rent software, we set out to improve the efficiency of message passing. Program-
mers should not be forced to consider whether to send data in a message or not;
message passing is the method for interprocess communication in ERLANG, and it
should be cheap enough for programmers to use it without having to worry about
performance.

1.3 Improving message passing

In the private heap architecture, the send operation consists of three parts:

1. Calculate the size of the message to allocate space in the receiver’s heap;

2. copy the message data to the receiver’s heap; and finally,

3. deliver the message to the receiver’s message queue.

To reduce the complexity of the send operation, we want to remove the parts of
the send whose cost is proportional to the message size, namely 1 and 2. By intro-
ducing a new memory architecture, where all process-local heaps are replaced by a
shared memory area, we can achieve this and reduce the cost of sending messages
to O(1), that is, make it a constant time operation. We call this the shared heap
architecture.

Efficient Memory Management for Message-Passing Concurrency 9
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Paper A describes the design and implementation of the shared heap architec-
ture and compares it to the private heap architecture in detail. As can be seen in
Paper A, the time to send messages is reduced in the shared heap architecture.

The shared heap architecture allows sharing of data objects in the ERLANG

heap. This is safe even without locking since objects in ERLANG are immutable
and the copying semantics of the send operation is preserved.

We also investigate a hybrid architecture where we combine the private heaps
with a shared memory area called the message area. In the message area we pre-
allocate data that will be used in messages. This is done with the guidance of
a static message analysis. The message analysis is accurate and finds almost all
messages (99% in our benchmarks). In the few cases where the analysis is unable
to determine if data will end up in a message or not, the data will be allocated
locally (on the private heap) and copied on demand if it is sent. This calls for a
mechanism to copy (parts of) messages on the fly in the send operation.

The details of the hybrid architecture are described in Paper A and Paper B,
and the message analysis used is described in Paper B. Paper B also includes
a description of the algorithm to perform copy on demand as used in the send
operation.

Currently, Erlang/OTP is single-threaded. The implementation of the hybrid
architecture is the enabling technology for a high-performance concurrency model
on top of a multi-threaded implementation of ERLANG. We are working towards
such an implementation. This has played a role in the design decisions we have
made and in the following sections we can see how multi-threading is one of the
motivations behind the design of the hybrid architecture.

2 Automatic Memory Management

In all kinds of computer applications, manual memory management is often the
source of hard-to-find software errors. The problem is to keep track of all pieces
of memory that the program uses and know when to return these pieces of memory
to the system. In many contexts (e.g., in concurrent software) it is hard or even
impossible to know if a piece of memory can be deallocated or not without looking
at the entire application. Therefore, most high-level programming languages do
not allow the programmer to manually allocate and deallocate memory, but rely on
automatic memory management like implicit allocation and the use of a garbage
collector for deallocation.

Garbage collectors have been developed since the late 50’s and come in many
flavors, but the basic principles are the same in all of them. The only data a com-
puter program can access directly, provided that programs do not access random
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addresses in memory, is the values stored in the computer registers. These regis-
ters will normally contain references to other data stored in the main memory of
the machine. By following these references recursively until we reach a fix-point,
we can find all data objects in the memory that the program can access. We call
these objects live. When the last reference to an object is removed from the set of
live objects, the object becomes dead. Note that the actual liveness of an object is
determined by the future use of that object and the definition of live objects used
in this thesis is a conservative approximation of the actual liveness. The live data
may contain a reference to an object that will never be used again and is technically
reclaimable, but as long as the reference is kept live, a garbage collector will not
treat the object as garbage.

We distinguish between the garbage collector and the rest of the program. The
program that operates in the memory managed by the garbage collector is called
the mutator since it is the one to mutate the memory contents.

2.1 Different garbage collection techniques

The task of a garbage collector is to make sure that the memory where dead objects
reside is given back to (reclaimed by) the memory allocator, for example of the
operating system or the virtual machine. This can be done directly or indirectly.

A direct method monitors all updates to memory and maintains a record per
data object to keep track of all references to that particular object. When there are
no references left, the object is dead and its memory can be immediately reclaimed.
Keeping the records up to date imposes an overhead on all memory allocations and
updates. The most common direct technique is reference counting [19], where the
record consists of a counter that keeps track of how many references there are to
that particular object.

An indirect (tracing) garbage collector will not reclaim dead objects immedi-
ately. Instead the mutator is interrupted occasionally, for example when the allo-
cated memory is exhausted, and the garbage collector will reclaim all objects that
are dead at that point. The garbage collector will start out with a set of roots (the
root-set). These are the memory references directly reachable from the program,
for example the registers. The root-set is traversed and all objects found are marked
as live and checked for references to other objects. Newly found objects will in
turn be scanned and the process will continue until all objects reachable from the
root-set have been marked. The remaining, unmarked objects are dead and will be
reclaimed. Once the garbage collector is done, the mutator can continue. The time
when the mutator is halted and the garbage collector is working is called garbage
collection stop-time.

The marking of live data can be done in several ways. One common technique,
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called copying garbage collection [14], is to “rescue” the live objects by copying
them to a new memory area directly when they are found. Afterwards, the entire
old heap area is reclaimed. Another common technique, first described in [34], is
to use a mark bit associated with each object to tag it as live. The mark bits are
then used either to compact the memory, that is to copy the live data to a contiguous
“block” of memory, or to create a list of the free areas in between the live objects
called the free-list. The last technique is known as mark-sweep collection. Since
mark-sweep never changes the location of any live data, it is referred to as a non-
moving garbage collection algorithm.

A heap managed by a copying garbage collector is compacted and afterwards
the free memory resides in one continuous area. Allocating in this area is fast and
usually only involves increasing a pointer and comparing it to the end of the heap.
When allocating using the free-list maintained by a non-moving garbage collector,
the entire free-list may have to be traversed to find an area large enough for the
allocation need. If the memory areas in the free-list are scattered in small pieces
over the heap, jammed in-between used areas, the memory is fragmented [31].
In such cases the allocator might be unable to find a large enough free chunk of
memory even though the total free memory is large enough.

During garbage collection, mark-sweep needs to traverse the memory twice.
The first traversal is needed to mark the live data (only the live data is scanned in
this phase), and the other to sweep the entire memory to create the free-list. A
copying collector will only traverse the live data, and it will only do it once. On
the other hand, it requires a free area to copy live data to during garbage collection.
This area must be as large as the heap area we collect to fit all possible live data.
This means that in practice only half of the available memory can be used for
allocation. Copying garbage collectors also suffer from “motion sickness” — after
a collection the data objects might be stored in a different order than the one they
were allocated in. Objects that were allocated in a consecutive chunk might be
scattered all over the heap after a copying collection leading to different cache
behavior as a result.

For a thorough survey on different garbage collection techniques, see [32].

2.2 Garbage collection in ERLANG

The garbage collection techniques investigated in this thesis share two properties.
They are based on tracing collectors and they are generational. Generational means
that the garbage collector uses the weak generational hypothesis that “most objects
die young” [45][33]. That is, most objects allocated in the heap will be dead before
they get the chance to survive a garbage collection. The objects that do survive a
garbage collection will most likely be around for some time in the program.

12 Efficient Memory Management for Message-Passing Concurrency



2 AUTOMATIC MEMORY MANAGEMENT

In Erlang/OTP, the heap is divided into two generations, young and old. New
data is allocated in the young generation. When a garbage collection occurs, live
data from the young generation is moved to the old generation. Since a garbage
collection of the young generation only looks at the youngest part of the heap we
call it a minor collection. A garbage collection of the old generation traverses all
the live objects and is therefore called a major collection. In this thesis we have
kept the generational structure in all memory architectures and garbage collection
techniques we investigate.

Since ERLANG does not allow destructive assignment of variables or data, a
new copy of an object needs to be created when the object is updated. Due to
this allocation-intensive nature of ERLANG programs, the young generation is fre-
quently garbage collected. Since we expect most of the data in the young genera-
tion to be dead, and we only trace live data, minor collections are expected to be
fast. The old generation will normally not fill up as quickly and thus major collec-
tions are expected to be infrequent. Once a major garbage collection occurs it will
in general take more time to finish than the minor collections. The reason for this
is that all live data in both generations must be traversed to find all the roots for the
old generation.

The private heap architecture and the shared heap architecture use the same
garbage collector. This is a copying collector which means a new heap will be
allocated at each garbage collection and all live data will be copied to it. In this
collector, data must survive two garbage collections in the young generation be-
fore being promoted to the old generation. Paper A gives more details about this
garbage collector.

Paper A’s Table 2 shows mutator memory consumption. In the table we notice
that the shared heap architecture shows a prominent decrease in memory consump-
tion thanks to its ability to share message data. As mentioned, the shared heap
architecture needs to allocate a new memory area the same size as the total shared
heap during major garbage collections. The processes in the private heap architec-
ture only garbage collect their own private heap and in a program with thousands of
processes the overhead of temporarily allocating another heap area for one process
is in general small.

2.2.1 Process isolation and multi-threading

In the private heap architecture each process has control over its own memory area.
There are no references between private heaps which means that the garbage col-
lection of a private heap only concerns that particular process. In a multi-threaded
implementation, the fact that there are no references between the private heaps
means that we can spawn of a separate thread to do the garbage collection, leaving
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2 AUTOMATIC MEMORY MANAGEMENT

the mutator-thread free to execute the remaining processes. This heap organization
also has the property that when a process terminates, its memory can be immedi-
ately reclaimed without the need for garbage collection.

In the shared heap architecture, data from all processes is interleaved and a
garbage collection requires that the root-set is gathered from all processes. This
means that, at least conceptually, there is a point of global synchronization of all
processes. The fact that data is interleaved also means that we are not able to re-
claim the memory from private data of a process without a garbage collection when
that process terminates. The larger root-set incurs more live data to copy during
garbage collection which in turn results in increased stop-times. As expected, Pa-
per A shows that the shared heap architecture has longer stop-times than the private
heap architecture.

In the hybrid architecture, process-local data is kept in the private heaps and
is garbage collected using the same algorithm as in the private and shared heap
architectures. This encapsulates a process so that it can garbage collect its private
heap without any synchronization with other processes. It also makes it possible to
reclaim the private heap immediately when a process terminates, without garbage
collection. By keeping the local data in the private heaps, less data is allocated
in the message area and the number of garbage collections needed in the message
area decreases. Unfortunately the major disadvantage of the shared heap can not
be fully avoided. The size of the root-set for the message area is in theory as large
as the root-set in the shared heap architecture. Even though less data needs to be
copied since we do not copy private data during a message area collection, the
number of memory words to traverse is at least the same. If the message analysis
fails to recognize some message data, the data will be copied to the message area by
the send operation and we end up with two live copies of the message to traverse,
one in the sender’s local heap referenced by the sender, and one in the message
area referenced by the receiver. In practice this results in longer garbage collection
stop-times.

As in the private heap architecture, the garbage collection of a private heap in
the hybrid architecture can be performed in a separate thread in a multi-threaded
implementation.

2.3 Garbage collection in real-time software

In the application domain of control systems, servers and communicating devices,
it is common to refer to systems as real-time. Real-time software has to be able to
respond to external signals or perform scheduled tasks within a certain deadline. If
the program does not respond to a signal reasonably fast, the signal might get lost,
or the response may come too late to act on it. Such systems can not be occupied
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3 INCREMENTAL GARBAGE COLLECTION

doing internal maintenance work like garbage collection for a long period of time.
If a system is busy doing garbage collection when a signal appears, there is no
guarantee that the garbage collection will finish in time to handle the signal. That
might cause the system to miss a deadline. The garbage collection stop-time can
therefore be a problem in real-time software and needs some extra attention in this
environment.

ERLANG is often used in high-availability large-scale embedded systems (e.g.,
telephone centers) and these systems typically require a high level of responsive-
ness. Even though the garbage collection technique used in the private heap archi-
tecture will not give any real-time guarantees, in practice the stop-times are short
which is enough for so called soft real-time applications. With this in mind, the
long stop-times of the garbage collector for the message area made us reconsider
the choice of garbage collector algorithm used to collect that area.

In the hybrid architecture, the process-local heaps share the same properties
as the heaps in the private heap architecture. Garbage collection of the process-
local heaps is a private business and is performed without any interference with
other processes. Also, as mentioned before, in a multi-threaded environment the
garbage collection of a process-local heap can be performed in a separate thread.
For these reasons the major bottleneck of the hybrid architecture is the garbage
collection of the message area.

Since reducing the stop-times for the private heap areas is an orthogonal is-
sue, we chose to concentrate on the message area and decided to make two major
changes to the design of the memory manager. The first was to implement a non-
moving (mark-sweep) garbage collector to be used in the old generation of the
message area. This garbage collector has the advantage that it avoids repeated
copying of old data. The design of the new memory manager, with a copying
collector for the young generation and a non-moving collector for the old genera-
tion, is presented in Paper C. The algorithm we present for the message area is of
course applicable to the private heaps as well. Our second change was to make the
garbage collector for the message area incremental.

3 Incremental Garbage Collection

As mentioned before, tracing collectors interrupt the mutator to perform garbage
collection. One advantage of this is that while the mutator executes, no time is
spent on memory management. This usually means no overhead for the mutator
on memory operations such as allocation and pointer assignment. On the negative
side there is the stop-time, a sometimes long pause in mutator execution when the
garbage collection takes place.

Efficient Memory Management for Message-Passing Concurrency 15
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In techniques like reference counting, the garbage collection is performed con-
tinuously while the mutator executes. To manage this, reference counting needs
read or write barriers that trap memory reads or writes to perform the record up-
date along with the memory operations. This usually has a non-negligible over-
head. On the other hand, it also means that the garbage collection work is evenly
spread through out the execution of the application. This property, to spread the
collection work throughout the application, is a desired feature and several tech-
niques have been developed to perform incremental garbage collection.

Incremental garbage collectors divide the garbage collection work of a tracing
collector into several smaller increments which are interleaved with mutator exe-
cution. By constraining these increments to some small enough time limit or work
effort, it is possible to guarantee that the mutator will execute often enough to keep
its deadlines. A measure used to determine the efficiency of the garbage collector
in a real-time environment is the Minimum Mutator Utilization (MMU) [15]. It
is defined as the minimum fraction of time that the mutator executes in any time
window.

3.1 Reference counting in ERLANG

Since reference counting will perform a small part of the garbage collection at
each memory update it is by nature incremental and it might seem tempting to
use reference counting in the message area of the hybrid architecture. However,
reference counting has drawbacks as well. It is for instance unable to reclaim
cyclic data structures. Even if there is no reference from the set of live objects to
the cyclic structure, the objects in the cycle will refer to each other and the records
for the objects will never be empty in such structures. Since ERLANG does not
allow destructive assignments, cyclic references cannot be created so this is not a
concern in our case. The record itself is a bigger problem. As mentioned, a record
field has to be associated to each data object in the heap. For environments using
mainly small objects, this might become a problem. Take for instance lists built
from cons cells; the data object (cons cell) occupies only two words of memory.
With an extra word to keep the record, the object size would increase by 50%,
increasing memory requirements of the program drastically. Lists are frequently
used in functional languages and ERLANG is no exception.

The objects we find in an ERLANG heap are atoms, numbers (floats and arbi-
trary precision integers), process identifiers, function descriptors, cons cells (lists),
and tuples. Each individual object is expected to be small. ERLANG also includes
a binary data type (a vector of byte-sized data). These binaries are in general large
objects and Erlang/OTP will not allocate them in the ERLANG heap but in a sepa-
rate memory area. The ERLANG heap will only contain a small header-object for
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each binary. We have examined the heap contents of a number of large commer-
cial ERLANG applications and found that almost three quarters of the heap objects
are cons cells. Out of the last quarter, more than 99% were objects smaller than
8 words. Reference counting is therefore not an option in our case, and for the
ERLANG heap we decided to stick to a tracing collector. Reference counting is
however suitable (and used) for the binary-area.

Paper C describes a number of optimizations implemented to reduce the size of
the root-set for the message area and, more importantly, how we use an incremental
garbage collector to split the garbage collection into smaller stages to avoid the long
stop-times.

3.2 A closer look at the algorithm used in the incremental collector

A garbage collection cycle starts when the young generation of the message area
overflows, that is when the mutator wants to allocate more memory than there is
free space left in the young generation. The cycle will continue through a number
of collection stages until all live objects in the young generation have been copied
to the old generation. Between each collection stage, the mutator is allowed to
perform some work. This work is measured in number of words allocated by the
mutator and the garbage collector will set a limit on how much work the mutator is
allowed to perform before it is time to start the next garbage collection stage.

When a garbage collection cycle is initiated we optimistically assume that the
collection will concern the young generation only. The calculation of mutator work
allowed between collection stages is therefore based on the size of the young gen-
eration. The mutator is given a new, empty memory area to allocate in during the
collection cycle (the nursery). The nursery has the same size as the young gener-
ation we are about to garbage collect which means that as long as we can rescue
live data in the same speed as the mutator is allocating, we can guarantee that the
collection cycle will end before the mutator runs out of memory in the nursery.

The copying garbage collector of the young generation will move live data into
the memory area managed by the non-moving collector, which is used in the old
generation. If this area overflows during the collection, a garbage collection of the
old generation is required. The allowed mutator work now has to be calculated
based on the size of the whole message area since we still have to guarantee that
the collection cycle (that now also includes a collection of the old generation) is
done before the mutator runs out of memory.

The incremental garbage collector in Paper C is presented in two different
versions, a time-based and a work-based one. The time-based collector splits the
garbage collection cycle into stages of a given (user-defined) time interval. The al-
lowed mutator work is then calculated using a worst-case approximation, described
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in Paper C, based on the collection speed. The work-based collector rescues at
least a constant (again user-defined) number of live words during each increment
and the allowed mutator work is based on this number.

With small increments the work-based collector interleaves the garbage collec-
tion work with the mutator with stop-times in the order of a few micro seconds. The
incremental versions of the collector do not impose any noticeable overhead on the
mutator and require no costly read or write barriers. The only barrier enforced by
the incremental garbage collector traps messages that have not been processed by
the garbage collector yet if they are sent to a process that has already been scanned
for roots. This is a cheap write barrier since it only affects the send operation and
not common memory operations such as reads or writes. Its overhead is so small,
it is not noticeable in runtime performance.

Paper C also reports on the mutator utilization of the hybrid architecture. In
all real-world benchmarks, the mutator gets to work on average over 80% of the
time in the work-based collector and about 75-80% in the time-based collector.

4 Contributions

Paper A describes the implementation of the shared heap and the hybrid heap
memory architectures. It compares them to the private heap architecture and
discusses pros and cons of all three schemes. This paper presents the first
detailed characterization of the advantages and disadvantages of different
memory architectures in a concurrent language where inter-process commu-
nication occurs through message passing.

Paper B gives some more in-depth information about the hybrid architecture and
presents the details of the message analysis. The effectiveness of the analysis
and the performance of the hybrid architecture with and without the analysis
is reported. The novel characteristics of the analysis are that it does not rely
on the presence of type information and it does not sacrifice precision when
handling list types. We also describe the technique used to copy messages
on the fly with support for garbage collection at any point in time.

Paper C describes the garbage collection algorithm used for the message area
and compares an incremental and a non-incremental version of the same
algorithm. The collector imposes no noticeable overhead on the mutator,
requires no costly barrier mechanisms, and has a relatively small space over-
head. The incremental collector obtains short stop-times and achieves high
mutator utilization.
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All the above memory architectures and garbage collection algorithms are im-
plemented and evaluated in the industrial-strength implementation of Erlang/OTP
and the work has also been included in the open source release of this system. For
each of the three papers, all comparisons of memory architectures, garbage col-
lection techniques etc. are made within the same version of Erlang/OTP. Only the
properties we investigate differ between the systems we benchmark. In all three
papers, we use real-world applications for benchmarking.

Related work is discussed in each of the three papers.

Comments on my participation

I started this work by implementing the shared heap and the hybrid heap architec-
tures. I also designed and implemented the algorithm to copy parts of messages on
the fly with support for garbage collection at any time. Once this was done and we
realized that the garbage collector was not suitable for the shared message area, I
designed and implemented the incremental garbage collector for the message area
with a copying young generation and a non-moving old generation, including opti-
mizations. To be able to obtain hard measurements on time performance I have also
implemented the benchmarking capabilities of Erlang/OTP, first using the built-in
Solaris timers and later using x86-linux hardware performance counters [38]. The
benchmark support also includes counters and statistics for various system activ-
ities and memory usage. Finally, I have performed the benchmarking in all three
papers and written the memory manager implementation-specific parts of Paper B
and Paper C.

My contribution to the work presented in Paper B has been to enable the run-
time system to allocate messages directly in the message area (as opposed to being
copied there in the send operation) and perform the benchmarking. I have not been
involved in the design of the message analysis.
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Abstract

We discuss alternative heap architectures for languages that rely on au-
tomatic memory management and implement concurrency through asyn-
chronous message passing. We describe how interprocess communication
and garbage collection happens in each architecture, and extensively discuss
the tradeoffs that are involved. In an implementation setting (the Erlang/OTP
system) where the rest of the runtime system is unchanged, we present a de-
tailed experimental comparison between these architectures using both syn-
thetic programs and large commercial products as benchmarks.

1 Introduction

In recent years, concurrency as a form of abstraction has become increasingly pop-
ular, and many modern programming languages (such as Occam, CML, Caml,
ERLANG, Oz, Java, and C#) come with some form of built-in support for concur-
rent processes (or threads). Depending on the concurrency model of the language,
interprocess communication takes place either using asynchronous message pass-
ing or through (synchronized) shared structures. These languages typically also
require support for automatic memory management, usually implemented using a
garbage collector. By now, many different garbage collection techniques have been
proposed and their characteristics are well-known; see [32, 47] for comprehensive
treatments on the subject. A less treated, albeit key issue in the design of a concur-
rent language implementation is that of the runtime system’s memory architecture.
It is clear that there exist many different ways of structuring the architecture of the
runtime system, each having its pros and cons. Despite its importance, this issue
has received remarkably little attention in the literature. Although many of its as-
pects are folklore, to our knowledge there has never been an in-depth investigation
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of the performance tradeoffs that are involved based on a non-toy implementation
where the rest of the system remains unchanged. The main aim of this paper is to
fill this gap. In particular, we systematically examine and experimentally evaluate
the tradeoffs of different heap architectures for concurrent languages focusing on
those languages where process communication happens through message passing.

More specifically, in this paper we focus on three different runtime system
architectures for concurrent language implementations: One where each process
allocates and manages its private memory area and all messages have to be copied
between processes, one where all processes share the same heap, and a hybrid ar-
chitecture where each process has a private heap for local data but where a shared
heap is used for data sent as messages. For each architecture, we discuss the archi-
tectural impact on the speed of interprocess communication and garbage collection.
To evaluate the performance of these architectures, we have implemented them in
an otherwise unchanged, industrial-strength, Erlang/OTP system. This system was
chosen in part due to our involvement in its development (cf. the HiPE native code
compiler [29]), but more importantly due to the existence of real-world highly con-
current programs which can be used as benchmarks. By instrumenting this system,
we have been able to measure the impact of the architecture both on large commer-
cial applications, and on concurrent synthetic benchmarks constructed to examine
the tradeoffs that are involved.

The rest of the paper is structured as follows: We begin by presenting aspects
of ERLANG which are relevant for our work, and by a brief overview of previous
work on memory management of concurrent language implementations. Then, in
Section 3, we describe a memory architecture where each process allocates and
manages its own memory area. In Section 4 we present the architecture of a sys-
tem with only one heap which is shared among all processes. Then in Section 5 we
develop a hybrid memory architecture with a shared memory area for all messages
and private heaps for data which is private to each process. An extensive perfor-
mance evaluation of these architectures is presented in Section 6. The paper ends
with some concluding remarks which include directions for future work.

2 Preliminaries and Related Work

2.1 ERLANG and Erlang/OTP

ERLANG is a strict, dynamically typed functional programming language with sup-
port for concurrency, communication, distribution, fault-tolerance, on-the-fly code
reloading, automatic memory management, and support for multiple platforms [2].
ERLANG was designed to ease the programming of large soft real-time control sys-
tems commonly developed by the telecommunications industry. It has so far been
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used quite successfully both by Ericsson and by other companies around the world
to develop large commercial applications.

ERLANG’s basic data types are atoms, numbers (floats and arbitrary precision
integers), and process identifiers; compound data types are lists and tuples. A
notation for objects (records in the ERLANG lingo) is supported but the underly-
ing implementation of records is as tuples. To allow efficient implementation of
telecommunication protocols, ERLANG also includes a binary data type (a vector
of byte-sized data). There is no destructive assignment of variables or data, and
the first occurrence of a variable is its binding instance. Function rule selection is
done with pattern matching combined with the use of flat guards in the head of the
rule. Since recursion is the only means to express iteration in ERLANG, tail call
optimization is a required feature of ERLANG implementations.

Processes in ERLANG are extremely light-weight (lighter than OS threads),
their number in typical applications is quite large, and their memory requirements
vary dynamically. ERLANG’s concurrency primitives — spawn, “!” (send), and
receive— allow a process to spawn new processes and communicate with other
processes through asynchronous message passing. Any data value can be sent as
a message and processes may be located on any machine. Each process has a
mailbox, essentially a message queue, where each message sent to the process
will arrive. Message selection from the mailbox occurs through pattern matching.
There is no shared memory between processes and distribution is almost invisible
in ERLANG. To support robust systems, a process can register to receive a message
if another one terminates. ERLANG provides mechanisms for allowing a process to
timeout while waiting for messages and a catch/throw-style exception mechanism
for error handling.

ERLANG is often used in “five nines” high-availability (i.e., 99.999% of the
time available) systems, where down-time is required to be less than five min-
utes per year. Such systems cannot be taken down, upgraded, and restarted when
software patches and upgrades arrive, since that would not respect the availability
requirement. Consequently, an ERLANG system comes with support for upgrading
code while the system is running, a mechanism known as hot-code loading.

The ERLANG language is small, but an ERLANG system comes with libraries
containing a large set of built-in functions for various tasks. With the Open Tele-
com Platform (OTP) middleware [44], ERLANG is further extended with a library
of standard components for telecommunication applications (real-time databases,
servers, state machines, process monitors, tools for load balancing), standard in-
terfaces such as CORBA, and a variety of communication protocols (e.g., HTTP,
FTP, etc.).
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2.2 Memory management in ERLANG and other concurrent languages

As in other functional languages, memory management in ERLANG is a respon-
sibility of the runtime system and happens through garbage collection. The soft
real-time concerns of the language call for bounded-time garbage collection tech-
niques. One such technique, based on a mark-sweep algorithm taking advantage
of the fact that the heap in an ERLANG system is unidirectional (i.e., is arranged
so that the pointers point in only one direction), has been proposed by Armstrong
and Virding in [1], but imposes a significant overhead and was never fully im-
plemented. In practice, in a tuned ERLANG system with a generational copying
garbage collector, garbage collection latency is usually low (less than 10 millisec-
onds) as most processes are short-lived or small in size. Longer pauses are quite
infrequent. However, a blocking collector provides no guarantees for the real-time
responsiveness that some applications may desire.

In the context of strict, concurrent functional language implementations, there
has been work that aims at achieving low garbage collection latency without pay-
ing the full price in performance that a guaranteed real-time garbage collector usu-
ally requires. Notable among them is the work of Doligez and Leroy [21] who
combine a fast, asynchronous copying collector for the thread-specific young gen-
erations with a non-disruptive concurrent mark-sweep collector for the old gen-
eration (which is shared among all threads). The result is a quasi-real-time col-
lector for Concurrent Caml Light. Also, Larose and Feeley in [24] describe the
design of a near-real-time compacting collector in the context of the Gambit-C
Scheme compiler. This garbage collector was intended to be used in the Etos
(ERLANG to Scheme) system, but to the best of our knowledge, it has not yet made
it to an Etos distribution. In order to achieve low garbage collection pause times,
concurrent or real-time multiprocessor collectors have also been proposed; both
for (concurrent) variants of ML [27, 36, 15], and recently for Java; see for exam-
ple [4, 26].

An issue which is to a large extent orthogonal to that of the garbage collec-
tion technique used is that of the memory organization of a concurrent system:
Should one use an architecture which facilitates sharing, or one that requires copy-
ing of data? The issue often attracts heated debates both in the programming lan-
guage implementation community and elsewhere.1 Traditionally, operating sys-
tems allocate memory on a per-process basis. The architecture of KaffeOS [3]

1For example, in the networking community an issue which is related to those discussed
in this paper is whether packets will be passed up and down the stack by reference or by
copying. Also, during the mid-80’s the issue of whether files can be passed in shared
memory was investigated by the operating systems community in the context of user-level
kernel extensions.
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uses process-specific heaps for Java processes and shared heaps for data shared
among processes. Objects in the shared heaps are not allowed to reference ob-
jects in process-specific heaps and this restriction is enforced with page protection
mechanisms. In the context of a multi-threaded Java implementation, the same
architecture is also proposed by Steensgaard [41] who argues for thread-specific
heaps for thread-specific data and a shared heap for shared data. The paper reports
statistics showing that, in a small set of multi-threaded Java programs, there are
very few conflicts between threads, but provides no experimental comparison of
this memory architecture with another.

Till the fall of 2001, the Ericsson ERLANG implementation had exclusively a
memory architecture where each process allocates and manages its own memory
area. We describe this architecture in Section 3. The main reason why this architec-
ture was chosen is that it is believed it results in lower garbage collection latency.
Wanting to investigate the validity of this belief, we have been working on a shared
heap memory architecture for ERLANG processes. We describe this architecture in
Section 4; it is already included in the Erlang/OTP release. Concurrently with our
work, Feeley [23] argued the case for an unified memory architecture for ERLANG,
an architecture where all processes get to share the same stack and heap. This is the
architecture used in the Etos system that implements concurrency through a call/cc
(call-with-current-continuation) mechanism. The case for the architecture used in
Etos is argued convincingly in [23], but on the other hand it is very difficult to
draw conclusions from the small experimental comparison between Etos and the
Ericsson Erlang/OTP implementation due to the differences in performance be-
tween the two systems, the lack of experimental evaluation using large programs,
and, more importantly, due to the big differences in the parameters (e.g., initial
sizes of memories, garbage collector settings) that are involved. As mentioned,
one of our aims is to compare memory architectures for concurrent languages in a
setting where the rest of the system is unchanged.

Assumptions Throughout the paper, for simplicity of presentation, we make
the following assumptions: 1) the system is running on an uniprocessor, 2) the
heap garbage collector is similar to the collector currently used in Erlang/OTP: a
Cheney-style semi-space stop and copy collector [14] with two generations, and 3)
message passing and garbage collection cannot be interrupted by the scheduler. For
a more detailed description of the garbage collector in Erlang/OTP refer to [46].
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Figure 1: Memory architecture with private heaps.

3 An Architecture with Private Heaps

The first memory architecture we examine is process-centric. In this architecture,
each process allocates and manages its own memory area which typically includes
a process control block (PCB), private stack, and private heap. Other memory
areas, for example a space for large objects, might also exist either on a per-process
basis or as a global area.

This is the default architecture of the Erlang/OTP R8 system, the version of
ERLANG released by Ericsson in the fall of 2001. The stack is used for function
arguments, return addresses, and local variables. Compound terms such as lists,
tuples, and objects which are larger than a machine word such as floating point
numbers and arbitrary precision integers (bignums) are stored on the heap. One
way of organizing the memory areas is with the heap co-located with the stack
(i.e., the stack and the heap growing towards each other). The advantage of doing
so, is that stack and heap overflow tests become cheap, just a comparison between
the stack and heap pointers which can usually be kept in machine registers. A dis-
advantage is that expansion or relocation of the heap or stack involves both areas.
As mentioned, ERLANG also supports large vectors of byte-sized data (binaries).
These are not stored on the heap; instead they are reference-counted and stored in
a separate global memory area. Henceforth, we ignore the possible existence of a
large object space as the issue is completely orthogonal to our discussion.

Figure 1 shows an instance of this architecture when three processes (P1, P2,
and P3) are present; shaded areas represent unused memory.

Process communication Message passing is performed by copying the term to
be sent from the heap of the sender to the heap of the receiver, and then inserting
a pointer to the message in the mailbox of the receiver which is contained in its
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Figure 2: Message passing in a private heap system.

PCB; see Figure 2. As shown in the figure, a local data structure might share the
same copy of a sub-term, but when that data structure is sent to another process
each sub-term will be copied separately. As a result, the copied message occupies
more space than the original. However, message expansion due to loss of sharing is
quite rare in practice.2 This phenomenon could be avoided by using some marking
technique and forwarding pointers, but note that doing so would make the message
passing operation even slower.

Garbage collection When a process runs out of heap (or stack) space, the pro-
cess’s private heap is garbage collected. In this memory architecture, the root set
of the garbage collection is the process’ stack and mailbox. Recall that a two-
generational (young and old) Cheney-style stop and copy collector is being used.
A new heap, local to a process, where live data will be placed, is allocated at the
beginning of the collection. The old heap contains a high water mark (the top of
the heap after the last garbage collection) and during a minor collection data below
this mark is forwarded to the old generation while data above the mark is put on the
new heap. During a major collection the old generation is also collected to the new
heap. At the end of the garbage collection the stack is moved to the area containing
the new heap and the old heap is freed.

In a system which is not multi-threaded, like the current Erlang/OTP system,
the mutator will be stopped and all other processes will also be blocked during
garbage collection.

2In particular it does not occur in our benchmarks.

Efficient Memory Management for Message-Passing Concurrency 29



PAPER A:3 AN ARCHITECTURE WITH PRIVATE HEAPS

Pros and cons According to its advocates, this design has a number of advan-
tages:

+ No cost memory reclamation — When a process terminates, its memory can
be freed directly without the need for garbage collection. Thus, one can use
processes for some simple form of memory management: a separate process
can be spawned for computations that will produce a lot of garbage.

+ Small root sets — Since each process has its own heap, the root set for a
garbage collection is the stack and mailbox of the current process only. This
is expected to help in keeping the GC stop-times short. However, as noted,
without a real-time garbage collector there is no guarantee for this.

+ Improved cache locality — Since each process has all its data in one con-
tiguous (and often small) stack/heap memory area, the cache locality for
each process is expected to be good.

+ Cheaper tests for stack/heap overflow — With a per-process heap, the heap
and stack overflow tests can be combined and fewer frequently accessed
pointers need to be kept in machine registers.

Unfortunately this design also has some disadvantages:

– Costly message passing — Messages between processes must be copied be-
tween the heaps. The cost of interprocess communication is proportional
to the size of the message. In some implementations, the message might
need to be traversed more than once: one pass to calculate its size (so as
to avoid overflow of the receiver’s heap and trigger its garbage collection or
expansion if needed) and another to perform the actual copy.

– More space needs — Since messages are copied, they require space on each
heap they are copied to. As shown, if the message contains the same sub-
term several times, there can even be non-linear growth when sending mes-
sages. Also, if a (sub-)term is sent back and forth between two processes
a new copy of the term is created for each send — even though the term
already resides on the appropriate heap before the send.

– High memory fragmentation — A process cannot utilize the memory (e.g.,
the heap) of another process even if there are large amounts of unused space
in that memory area. This typically implies that processes can allocate only
a small amount of memory by default. This in turn usually results in a larger
number of calls to the garbage collector.
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Figure 3: Memory architecture with shared heap.

From a software development perspective, a process-centric memory architecture
can have an impact on how programs are written. For example, due to the under-
lying implementation which until recently was exclusively based on the memory
architecture described in this section, the recommendation in the ERLANG pro-
gramming guidelines has been to keep messages small. This might make program-
ming of certain applications awkward.

4 An Architecture with a Shared Heap

The problems associated with costly message passing in a private heap system can
be avoided by a memory architecture where the heap is shared. In such a system
each process can still have its own stack, but there is only one global heap, shared
by all processes. The shared heap contains both messages and all compound terms.
Figure 3 depicts such an architecture.

Process communication Message passing is done by just placing a pointer to
the message in the receiver’s mailbox (located in its PCB); see Figure 4. The
shared heap remains unchanged, and neither copying nor traversal of the message
is needed. In this architecture, message passing is a constant time operation.

Garbage collection Conceptually, the garbage collector for this system is the
same as in the private heap one, the only difference being that the root set includes
the stacks and mailboxes of all processes; not just those of the process forcing the
garbage collection. This implies that, even in a multi-threaded system, all processes
get blocked by GC.
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Figure 4: Message passing in a shared heap system.

Pros and cons This design avoids the disadvantages of the private heap system,
which are now turned into advantages:

+ Fast message passing — As mentioned, message passing only involves up-
dating a pointer; an operation which is independent of the message size.

+ Less space needs — Since data passed as messages is shared on the global
heap, the total memory requirements are lower than in a private heap system.
Also, note that since nothing is changed on the heap, shared sub-terms of
messages remain of course shared within a message.

+ Low fragmentation — The whole memory in the shared heap is available to
any process that needs it.

Unfortunately, even this system has disadvantages:

– Larger root set — Since all processes share the heap, the root set for each
GC conceptually includes the stacks of all processes. Unless a concurrent
garbage collector is used, all processes remain blocked during GC.

– Larger to-space — With a copying collector a to-space as large as the heap
which is being collected needs to be allocated. One would expect that in
general this area is larger when there is a shared heap than when collecting
the heap of each process separately.

– Higher GC times — When a copying collector is used, all live data will be
moved during garbage collection. As an extreme case, a sleeping process that
is about to die with lots of reachable data will affect the garbage collection
times for the whole system. With private heaps, the live data of only the
process that forces the garbage collection needs to be moved during GC.

– Separate and probably more expensive tests for heap and stack overflows.

32 Efficient Memory Management for Message-Passing Concurrency



PAPER A:5 AN ARCHITECTURE WITH PRIVATE HEAPS AND A
SHARED MESSAGE AREA

The following difference between the two memory architectures also deserves to
be mentioned: In a process-centric system, it is easy to impose limits on the space
resources that a particular (type of) process can use. Doing this in a shared heap
system is significantly more complicated and probably quite costly. Currently, this
ability is not required by ERLANG.

Optimizations The problems due to the large root set can be to a large extent
remedied by some simple optimizations. For the frequent minor collections, the
root set need only consist of those processes that have touched the shared heap
since the last garbage collection. Since each process has its own stack, a safe
approximation, which is cheap to maintain and is the one we currently use in our
implementation, is to consider as root set the set of processes that have been active
(have executed some code or received a message in their mailbox) since the last
garbage collection.3

A natural refinement is to further reduce the size of the root set by using gen-
erational stack collection techniques [16] so that, for processes which have been
active since the last GC, their entire stack is not rescanned multiple times. Notice
however that this is an optimization which is applicable to all memory architec-
tures. We are currently investigating the effect of generational stack scanning.

Finally, the problem of having to move the live data of sleeping processes could
be remedied by employing a non-moving garbage collector for the old generation.

5 An Architecture with Private Heaps and a Shared Mes-
sage Area

Each of the memory architectures described so far has its advantages. Chief among
them are that the private heap system allows for cheap reclamation of memory upon
process termination and for garbage collection to occur independently of other pro-
cesses, while the shared heap system optimizes interprocess communication and
does not require unnecessary traversals of messages. Ideally, we want an architec-
ture that combines the advantages of both systems without inheriting (m)any of its
disadvantages.

Such an architecture can be obtained by a hybrid system in which there is
one shared memory area where messages (i.e., data which is exchanged between
processes) are placed, but each process has its private heap for the rest of its data

3In our setting, this optimization turns out to be quite effective independently of appli-
cation characteristics. This is because in an Erlang/OTP system there is always a number
of system processes (spawned at system start-up and used for monitoring, code upgrading,
or exception handling) that typically stay inactive throughout program execution.
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Figure 5: A hybrid memory architecture.

(which is local to the process). In order to make it possible to collect the private
heap of a process without touching data in the global area, and thus without having
to block other processes during GC, there should not be any pointers from the
shared message area to a process’ heap. Pointers from private heaps (or stacks) to
the shared area are allowed. Figure 5 shows this memory architecture: The three
processes P1, P2, and P3 each have their own PCB, stack, and private heap. There
is also a shared area for messages. The picture shows pointers of all allowed types.
Notice that there are no pointers out of the shared area, and no pointers between
private heaps.

Allocation strategy This hybrid architecture requires information whether data
is local to a process or will be sent as a message (and thus is shared). It is desir-
able that such information is available at compile time and can be obtained either
by programmer annotations, or automatically through the use of an escape analy-
sis. Such analyses have been previously developed for allowing stack allocation of
data structures in functional languages [37] and more recently for synchronization
removal from Java programs [7, 17, 39]. It is likely that separate compilation, dy-
namically linked libraries, or other language constructs (e.g., in ERLANG the abil-
ity to dynamically update the code of a particular module) might in practice render
such analyses imprecise. Hence such a hybrid system which depends on analysis
has to be designed with the ability to handle imprecise escape information.

More specifically, the information returned by such an escape analysis is that
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Figure 6: Message passing in a hybrid architecture.

at a particular program point either an allocation is of type local to a process,
or escapes from the process (i.e., is part of a message), or is of unknown type
(i.e., might be sent as a message). The system should then decide where data of
unknown type is to be placed. If allocation of unknown data happens on the local
heap, then each send operation has to test whether its message argument resides
on the local heap or the message area. If the data is already global, all is fine and
a pointer can be passed to the receiver. Otherwise the data has to be copied from
the local heap to the message area. This design minimizes the amount of data on
the shared message area. Still, some messages will need to be copied with all the
disadvantages of copying data. If, on the other hand, allocation of unknown data
happens on the shared memory area, then no test is needed and no data ever needs
to be copied. The downside is that some data that is really local to a process might
end up on the shared area where they can only be reclaimed by garbage collection.

Process communication Provided that the message resides in the shared mes-
sage area, message passing in this architecture happens exactly as in the shared
heap system and is a constant time operation. For uniformity, Figure 6 depicts the
operation. As mentioned, if a piece of data which is actually used as a message is
somehow not recognized as such by the escape analysis, it first has to be copied
from the private heap of the sender to the shared message area.

Garbage collection Since there exist no external pointers into a process’ private
area, neither from another process nor from the shared message area, local minor
and major collections (i.e., those caused by overflow of a private heap) can happen
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independently from other processes (no synchronization is needed) and need not
block the system. This is contrary to Steensgaard’s scheme [41] where GCs always
collect the shared area and thus require locking.

In our scheme, garbage collection of the shared message area requires synchro-
nization. To avoid the problems of repeated traversals of long-lived messages and
of having to update pointers in the private heaps of processes, the shared message
area (or just its old generation) can be collected with a non-moving mark-sweep
collector. This type of collector has the added advantage that it is typically eas-
ier to be made incremental (and hence also concurrent) than a copying collector.
Another alternative could be to collect messages using reference counting. As an
aside, we note that usual drawbacks of reference counting are not a problem in our
setting since there are no cycles between pointers in the message area.

Pros and cons As mentioned, with this hybrid architecture we get most of the
advantages of both other systems:

+ Fast message passing.

+ Less space needs — The memory for data passed as messages between pro-
cesses is shared.

+ No cost memory reclamation — When a process dies, its stack and heap can
be freed directly without the need for garbage collection.

+ Small root sets for the frequent local collections — Since each process has
its own heap, the root set for a local garbage collection is only the stack of
the process which is forcing the collection.

+ Cheap stack/heap overflows.

Still, this hybrid system has some disadvantages:

– Memory fragmentation.

– Large root set for the shared message area — A garbage collection of the
shared area needs to examine all processes’ stacks and local heaps rendering
the collection costly. In the worst case, the cost of GC will be as big as
in the shared heap system. However, since in many applications messages
typically occupy only a small fraction of the data structures created during
a program’s evaluation and since this shared area can be quite large, it is
expected that these global GCs will be infrequent. Moreover, the root set
can be further reduced with the optimizations described in Section 4.

– Requires escape analysis — The system’s performance is to a large extent
dependent on the precision of the analysis which is employed.
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6 Performance Evaluation

The first two memory architectures, the one based on private heaps and that based
on a shared heap, have been fully implemented and released since the fall of 2001
as part of Erlang/OTP R8.4 The user chooses between them through a configure
option. The development of the hybrid architecture has taken place after the release
of R8. It is currently in a prototype stage: the runtime system support is rock-solid
but the compiler does not yet feature an escape analysis component. Our plan
is to complete this work and also include this memory architecture in a future
Erlang/OTP release.

An extensive performance comparison of all architectures under various initial
memory configurations has been performed, and the complete set of time and space
measurements can be found in [46]. Due to space limitations, we only present a
small subset of these measurements here; the interested reader should also look
at [46]. In particular, in this paper we refrain from discussing issues related to the
expansion/resizing policy used or the impact of the initial memory size of each
architecture. We instead use the same expansion policy in all architectures and fix
a priori what we believe are reasonable, albeit very conservative, initial sizes for
all memory areas.

More specifically, in all experiments the private heap architecture is started
with an initial combined stack/heap size of 233 words per process. We note that
this is the default setting in Erlang/OTP and thus the setting most frequently used
in the ERLANG community. In the comparison between the private and the shared
heap architecture (Section 6.2), the shared heap system is started with a stack of
233 words and an initial shared heap size of 10,946 words. At first glance it might
seem unfair to use a bigger heap for the shared heap system, but since all processes
in this system get to share a single heap, there is no real reason to start with a
small heap size as in the private heap system. In contrast, there is a need to keep
heaps small in a private heap system in order to avoid running out of memory
and reduce fragmentation as in such an architecture a process that allocates a large
heap hogs memory from other processes. In any case, note that these heap sizes are
extremely small by today’s standards (even for embedded systems). In all systems,
the expansion policy expands the heap to the closest Fibonacci number which is
bigger than the size of the live data5 plus the additional memory need.

6.1 The benchmarks and the setting

The performance evaluation was based on the following benchmarks:

4Erlang/OTP can be downloaded from http://www.erlang.org.
5The size of live data is the size of the heap after GC.
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ring A concurrent benchmark which creates a ring of 100 processes and sends
100,000 messages.

life Conway’s game of life on a 10 by 10 board where each square is implemented
as a process.

procs(number of processes, message size) A synthetic concurrent bench-
mark which sends messages in a ring of processes. Each process creates a
new message when it is spawned and sends it to the next process in the ring
(its child). Each message has a counter that ensures it will be sent exactly 10
times to other processes.

sendsame, garbage, and keeplive are variations of the procs benchmark de-
signed to test the behavior of the memory architectures under different pro-
gram characteristics. The arguments to the programs are those of procs
together with an extra parameter: the counter which denotes the number of
times a message is to be sent (which is fixed to 10 for procs). The send-
same benchmark creates a single message and distributes it among other
processes. garbage creates a new message each time and makes the old one
inaccessible, while keeplive creates a new message each time but keeps the
old ones live by storing them in a list.

In addition, we used the following “real-life” ERLANG programs:

eddie A medium-sized (≈2,000 lines of code) application implementing a HTTP
parser which handles http-get requests.

BEAM compiler A large program (≈30,000 lines of code excluding code for
libraries) which is mostly sequential; processes are used only for I/O. The
benchmark compiles the file lib/gs/src/gstk generic.erl of the
Erlang/OTP R8 distribution to byte code.

NETSim (Network Element Test Simulator) A large commercial application
(≈630,000 lines of ERLANG code) mainly used to simulate the operation
and maintenance behavior of a network. In the actual benchmark, a network
with 20 nodes is started and then each node sends 100 alarm bursts through
the network. The NETSim application consists of several different ERLANG

nodes. Only three of these nodes are used as benchmarks, namely a network
TMOS server, a network coordinator, and the alarm server.

Some additional information about the benchmarks is contained in Table 1. De-
tailed statistics about message sizes can be found in [46].

Due to licensing reasons, the platform we had to use for the NETSim program
was a SUN Ultra 10 with a 300 MHz Sun UltraSPARC-IIi processor and 384 MB
of RAM running Solaris 2.7. The machine was otherwise idle during the bench-
mark runs: no other users, no window system. Because of this, and so as to get
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Benchmark Processes Messages

ring 100 100,000
life 100 800,396

eddie 2 2,121
BEAM compiler 6 2,481
NETSim TMOS 4,066 58,853

NETSim coordinator 591 202,730
NETSim alarm server 12,353 288,675

procs 100x100 100 6,262
procs 1000x100 1,000 512,512
procs 100x1000 100 6,262

procs 1000x1000 1,000 512,512

Table 1: Number of processes and messages.

a consistent picture, we decided to also use this machine for all other benchmarks
too. Performance of all heap architectures on a dual-processor SUN machine are
reported in [46].

In the rest of this section, all figures containing execution times present the data
in the same form. Measurements are grouped by benchmark, and times have been
normalized so that the execution time for the private heap system (leftmost bar in
each group and identified by P) is 1. Bars to its right show the relative execution
time for the shared heap (S) and, wherever applicable, the hybrid (H) system. For
each system, the execution time is subdivided into time spent in the mutator, time
spent in the send operation, time spent copying messages, and time taken by the
garbage collector further subdivided into time for minor and major collections.
For the private heap system, in Figures 8 and 7 we also explicitly show the time to
traverse the message in order to calculate its size (this is part of the send operation).
In Figures 10–12 this time is folded into the send time.

6.2 Comparison of private versus shared heap architecture

Time performance As can be seen in Figure 7(a), in the synthetic procs bench-
mark, the shared heap system is much faster when it comes to sending small-sized
messages among 100 ERLANG processes. This is partly due to the send opera-
tion being faster and partly because the shared heap system starts with a bigger
heap and hence does not need to do as much garbage collection. When messages
are small, increasing the number of processes to 1000 does not change the picture
much as can be seen in Figure 7(b). On the other hand, if the size of the message
is increased so that the shared heap system also requires garbage collection often,
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Figure 7: Normalized times for the procs benchmark.
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Figure 8: Normalized execution times.

then the effect of the bigger root set which increases garbage collection times be-
comes visible; see Figures 7(c) and 7(d). This is expected, since the number of
processes which have been active between garbage collections (i.e., the root set) is
quite high.

The performance of the two architectures on real programs shows a more mixed
picture; see Figure 8. The shared heap architecture outperforms the private heap
architecture on many real-world programs. For eddie, the gain is unrelated to the
initial heap sizes; cf. [46]. Instead, it is due to the shared heap system having bet-
ter cache behavior by sharing messages and by avoiding garbage collections. In
the truly concurrent programs, ring and life, the private heap system spends 18%
and 25% of the execution time in interprocess communication. In contrast, the
shared heap system only spends less than 12% of its time in message passing. The
speedup for the BEAM compiler can be explained by the larger initial heap size
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Private Shared
Benchmark Allocated Used Allocated Used

ring 41.6 11.7 10.9 2.3
life 52.8 33.1 28.6 28.6

eddie 78.1 67.3 46.3 46.3
BEAM compiler 1375.0 1363.0 1346.0 1346.0
NETSim TMOS 2670.5 1120.6 317.8 317.8

NETSim coordinator 233.0 162.0 121.4 121.4
NETSim alarm server 2822.9 2065.7 317.8 317.8

Table 2: Heap sizes allocated and used (in K words).

for the shared heap system which reduces the total time spent in garbage collection
to one third. The performance of the shared heap architecture is worse than that
of the private heap system in two of the NETSim programs and there is a speedup
only in the case where the number of processes is moderate. This is to some ex-
tent expected, since NETSim is a commercial product developed over many years
using a private heap-based Erlang/OTP system and tuned in order to avoid garbage
collection and reduce send times. For example, from the number of processes in
Table 1 and the maximum total heap sizes which these programs allocate (data
shown in Table 2), it is clear that in the NETSim programs either the majority of
the processes do not trigger garbage collection in the private heap system as their
heaps are small, or processes are used as a means to get no-cost heap reclamation.
As a result, the possible gain from a different memory architecture cannot be big.
Indeed, as observed in the case of NETSim alarm server, the large root set (cf.
Table 1) can seriously increase the time spent in garbage collection and slow down
execution of a program which has been tuned for a private heap architecture.

We suspect that the general speedup for the mutator in the shared heap system
is due to better cache locality: partly due to requiring fewer garbage collections by
sharing data between processes and partly due to having heap data in cache when
switching between processes. Note that this is contrary to the general belief in the
ERLANG community — and perhaps elsewhere — that a process-centric memory
architecture results in better cache behavior. To verify our hunch, we measured the
number of data cache misses of some of these benchmarks using the UltraSPARC
hardware performance counters. In programs that required garbage collection, the
number of data cache misses of the shared heap system is indeed smaller than that
of the private heap system; however only by about 3%. Although this confirms that
a shared heap system can have a better cache behavior, we are not sure whether the
difference in cache misses accounts for all the mutator speedup we observe or not.
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Figure 9: Max garbage collection stop-times (ms).

Stop-times Figure 9 shows the longest garbage collection stop-time in millisec-
onds for each benchmark. As can be seen, the concern that many processes can
lead to a larger root set and hence longer garbage collection latency is justified.
When the root set consists of many processes, the stop-times for the shared heap
system are slightly longer than those of the private heap system.

As the memory requirements of a program increase (data shown in Table 2),
the garbage collection stop-times also increase. Also, the bigger the size of the
live data, the more are garbage collection times likely to be negatively influenced
by caching effects. Bigger heap needs also mean that collection is required more
often, which increases the likelihood that GC will be triggered at a moment when
the root set is large or there is a lot of live data. We mention, that although the
general picture is similar, the GC latency decreases when starting the systems with
bigger initial heap sizes; cf. [46].

Notice that the difference in maximum stop-times between the two systems is
not very big and that a private heap system is no guarantee for short GC stop-times.
True real-time GC latency can only be obtained using an on-the-fly or real-time
garbage collector.

Space performance Table 2 contains a space comparison of the private versus
the shared heap architecture on all non-synthetic benchmarks. For each program,
maximum sizes of heap allocated and used is shown in thousands of words. Recall
that in both systems garbage collection is triggered whenever the heap is full; after
GC, the heap is not expanded if the heap space which is recovered satisfies the need.
This explains why maxima of allocated and used heap sizes are often identical for
the shared heap system. From these figures, it is clear that space-wise the shared
heap system is a winner. By sharing messages, it usually allocates less heap space;
the space performance on the NETSim programs is especially striking. Moreover,
by avoiding fragmentation, the shared heap system has better memory utilization.
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Figure 10: Performance of the keeplive benchmark.

&�' &�&

&�' (�&

&�' )�&

&�' *�&

&�' +
&

&�' ,�&

&�' -�&

&�' .�&

&�' /�&

&�' 0�&

(�' &�&

1�2�3�4�1�2�3�4�5�3 1�2�3�4�1�2�3�4�1�3�5�3�3�3�4�1�2�3�4�5�3�5�3�3�3�4�1�2�3�4�1�3�1�2�3�4�5�3�3�3�4�5�3�1�2�3�4�5�3�3�3�4�1�3 5�3�3�3�4�5�3�3�3�4�5�3!5�3�3�3�4�5�3�3�3�4�1�3

 mutator  send+size  copy  minor  major

6 6 6 67 7 7 78 8 8 8%6 6 6 67 7 7 78 8 8 8

Figure 11: Performance of the garbage benchmark.
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Figure 12: Performance of the sendsame benchmark.
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6.3 Comparison of all three architectures

As mentioned, the runtime system of the hybrid memory architecture is imple-
mented, but no escape analysis is currently integrated in the compiler. For this
reason, the large benchmarks cannot yet be run in this configuration. However, for
the small synthetic benchmarks keeplive, garbage, and sendsame, we gener-
ated allocation code by hand and fed it into the system. In all benchmarks of this
section, the shared memory area of the hybrid system is large enough so that none
of them triggers its garbage collection. On the other hand, each of the per-process
heaps for the non-shared data has an initial size of 233 words, as in the private heap
system, and does require GC.

Figures 10, 11, and 12 present normalized execution times for these bench-
marks. The 8 groups in each figure correspond to different arguments (NxSxT)
passed to the benchmarks where N is the number of processes, S is the size of
each message, and T denotes how many times each message is sent. The 3 bars
in each group show normalized execution times for each system. Recall that the
execution time for the shared heap (S) and the hybrid (H) system is normalized to
the execution time of the private heap (P) system for each group. This means that
one cannot compare bars from two different groups directly.

The keeplive benchmark is an extreme case for a copying garbage collector:
each process keeps all its incoming messages live. From Figure 10, we can see
that the shared heap system spends less time in send (and copy) than the private
heap system. However, when the number of processes or the size of the message
increases, the time that the shared heap system spends in garbage collection be-
comes a bottleneck, making overall execution slower than the private heap system.
The hybrid system on the other hand has very low send times (no copying is re-
quired) and also very low garbage collection times due to the fact that the shared
memory area is big enough to not need any garbage collection.

In the garbage benchmark each process throws away the incoming messages
and instead creates a new message that it sends to the next process. As we can see in
Figure 11, the shared heap system behaves better when the heap is not constantly
overflowing with more and more live data. The hybrid system is slightly faster
overall, despite the fact that its mutator is often slightly slower (perhaps due to the
runtime system requiring more machinery).

Finally, the sendsame benchmark is an extreme case for sharing messages:
a single message is created which is distributed to all the processes in the ring and
then passed around to another 10 or 20 processes, depending on the benchmark’s
last parameter. In the private heap system the message is copied from heap to heap
requiring a considerable amount of garbage collection even for modest-sized mes-
sages. In this benchmark, all that the mutator does, after creating one message once
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and for all, is to receive a message, decrement a counter, and pass the message on
to another process. (Note once again that the bars in all groups are normalized to
the the total time for the private heap system for that group; the absolute times for
this benchmark are about half of those of the other benchmarks.) Both the shared
heap system and the hybrid system behave extremely well on this benchmark, since
message passing is much faster (no need to copy or calculate the size of the mes-
sage), and since the message is not copied no new data is created and hence no
garbage collection is needed. In the best case (250x1000x20) the shared heap sys-
tem is over nine times faster than the private heap system. In general, the shared
heap system and the hybrid system are behaving similarly on this benchmark.

7 Concluding Remarks

In this paper we have presented three alternative memory architectures for high-
level programming languages that implement concurrency through message pass-
ing. We have systematically investigated aspects that might influence the choice
between them, and extensively discussed the associated performance tradeoffs.
Moreover, in an implementation setting where the rest of the runtime system is
unchanged, we have presented a detailed experimental comparison between these
architectures both on large highly concurrent programs and on synthetic bench-
marks. To the best of our knowledge, all these fill a gap in the literature.

It would be ideal if the paper could now finish by announcing the “winner”
heap architecture. Unfortunately, as our experimental evaluation shows, perfor-
mance does depend on program characteristics and the tradeoffs that we discussed
do exhibit themselves in programs. Perhaps it is better to leave this choice to the
user, which is the approach we are currently taking by providing more than one
heap architecture in the Erlang/OTP release. When the choice between these ar-
chitectures has to be made a priori, it appears that the shared heap architecture is
preferable to the private heap one: it results in better space utilization and is often
faster, except in cases with many processes with high amounts of live data. The hy-
brid system seems to nicely combine the advantages of the two other architectures,
and it would have been our recommendation if we had hard data on the precision
of the escape analysis.

However, perhaps there are other criteria that might also influence the decision.
Architectures where messages get placed in an area which is shared between pro-
cesses free the programmer from worrying about message sizes. Moreover, they
open up new opportunities for interprocess optimizations. For example, within a
shared heap system one could, with a lower overhead than in a private heap scheme,
switch to the receiving processes at a message send, achieving a form of fast remote
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procedure call between processes. It would even be possible to merge (and further
optimize) code from two communicating processes in a straightforward manner as
discussed in [28]. We intend to investigate this issue.

We are currently incorporating the escape analysis into the compiler in order
to evaluate the performance of the hybrid architecture on large applications. In
addition, we intend to investigate how concurrent or real-time garbage collection
techniques fit into the picture.

8 Acknowledgments

This research has been supported in part by the ASTEC (Advanced Software Tech-
nology) competence center with matching funds by Ericsson Development. We
thank members of the Erlang/OTP team for discussions, an anonymous referee for
suggestions that improved the presentation, and Bengt Tillman and Tomas Abra-
hamsson from the NETSim team for allowing and helping us use their product as
a benchmark.

46 Efficient Memory Management for Message-Passing Concurrency



Paper B

Message Analysis for Concurrent
Languages

Published in Static Analysis: Proceedings of the 10:th
International Symposium (SAS’03)

June 2003

47





Message Analysis for Concurrent Languages

Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelmsson

Computing Science Department
Uppsala University, Sweden

{richardc,kostis,jesperw}@it.uu.se

Abstract

We describe an analysis-driven storage allocation scheme for concurrent
languages that use message passing with copying semantics. The basic prin-
ciple is that in such a language, data which is not part of any message does
not need to be allocated in a shared data area. This allows for deallocation
of thread-specific data without requiring global synchronization and often
without even triggering garbage collection. On the other hand, data that is
part of a message should preferably be allocated on a shared area, which
allows for fast (O(1)) interprocess communication that does not require ac-
tual copying. In the context of a dynamically typed, higher-order, concurrent
functional language, we present a static message analysis which guides the
allocation. As shown by our performance evaluation, conducted using an
industrial-strength language implementation, the analysis is effective enough
to discover most data which is to be used as a message, and to allow the
allocation scheme to combine the best performance characteristics of both a
process-centric and a shared-heap memory architecture.

1 Introduction

Many programming languages nowadays come with some form of built-in support
for concurrent processes (or threads). Depending on the concurrency model of
the language, interprocess communication takes place either through synchronized
shared structures (as for example in Java), using synchronous message passing on
typed channels (as for example in Concurrent ML), or using asynchronous mes-
sage passing (as for example in ERLANG). Most of these languages typically also
require support for automatic memory management, usually implemented using a
garbage collector. So far, research has largely focused on the memory reclamation
aspects of these concurrent systems. As a result, by now, many different garbage

49



PAPER B:1 INTRODUCTION

collection techniques have been proposed and their characteristics are well-known;
see for example [32].

A less treated, albeit key issue in the design of a concurrent language imple-
mentation is that of memory allocation. It is clear that, regardless of the concur-
rency model of the language, there exist several different ways of structuring the
memory architecture, each having its pros and cons. Perhaps surprisingly, till re-
cently, there has not been any in-depth investigation of the performance tradeoffs
that are involved in the choice between these alternative architectures. In [30], we
provided the first detailed characterization of the advantages and disadvantages of
different memory architectures in a language where communication occurs through
message passing.

The reasons for focusing on this type of languages are both principled and
pragmatic. Pragmatic because we are involved in the development of a production-
quality system of this type, the Erlang/OTP system, which is heavily used as a
platform for the development of highly concurrent (thousands of processes) com-
mercial applications. Principled because, despite current common practice, we
hold that concurrency through (asynchronous) message passing with copying se-
mantics is fundamentally superior to concurrency through shared data structures.
Considerably less locking is required, and consequently the method has better per-
formance and scales better. Furthermore, the copying semantics makes distribution
transparent.

Our contributions Our first contribution, which motivates our analysis, is in the
area of runtime system organization. Based on the pros and cons of different mem-
ory architectures described in [30], we describe two different variants of a runtime
system architecture that has process-specific areas for allocation of local data, and
a common area for data that is shared between communicating processes (i.e., is
part of some message). In doing so, it allows interprocess communication to occur
without actual copying, uses less overall space due to avoiding data replication, and
allows for the frequent process-local heap collections to take place without a need
for global synchronization of processes, reducing the level of system irresponsive-
ness due to garbage collection.

Our second and main contribution is to present in detail a static analysis, called
message analysis, whose aim is to discover which data is to be used as message,
and which can guide the allocation in such a runtime system architecture. Novel
characteristics of the analysis are that it does not rely on the presence of type in-
formation and does not sacrifice precision when handling list types.

Finally, we have implemented these schemes in the context of an industrial-
strength implementation used for highly concurrent time-critical applications, and
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report on the effectiveness of the analysis, the overhead it incurs on compilation
times, and the performance of the resulting system.

Summary of contents We begin by introducing ERLANG and reviewing our
prior work on heap architectures for concurrent languages. Section 3 goes into
more detail about implementation choices in the hybrid architecture. Section 4
describes the escape analysis and message analysis, and Sect. 5 explains how the
information is used to rewrite the program. Section 6 contains experimental re-
sults measuring both the effectiveness of the analysis and the effect that the use of
the analysis has on improving execution performance. Finally, Sect. 7 discusses
related work and Sect. 8 concludes.

2 Preliminaries and Prior Work

2.1 ERLANG and Core Erlang

ERLANG [2] is a strict, dynamically typed functional programming language with
support for concurrency, distribution, communication, fault-tolerance, on-the-fly
code replacement, and automatic memory management. ERLANG was designed to
ease the programming of large soft real-time control systems like those commonly
developed in the telecommunications industry. It has so far been used quite suc-
cessfully both by Ericsson and other companies around the world to construct large
(several hundred thousand lines of code) commercial applications.

ERLANG’s basic data types are atoms (symbols), numbers (floats and arbitrary
precision integers), and process identifiers; compound data types are lists and tu-
ples. Programs consist of function definitions organized in modules. There is no
destructive assignment of variables or data. Because recursion is the only means to
express iteration in ERLANG, tail call optimization is a required feature of ERLANG

implementations.
Processes in ERLANG are extremely light-weight (lighter than OS threads),

their number in typical applications can be large (in some cases up to 50,000
processes on a single node), and their memory requirements vary dynamically.
ERLANG’s concurrency primitives — spawn, “!” (send), and receive— allow
a process to spawn new processes and communicate with other processes through
asynchronous message passing. Any value can be sent as a message and processes
may be located on any machine. Each process has a mailbox, essentially a message
queue, where all messages sent to the process will arrive. Message selection from
the mailbox is done by pattern matching. In send operations, the receiver is speci-
fied by its process identifier, regardless of where it is located, making distribution
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all but invisible. To support robust systems, a process can register to receive a mes-
sage if some other process terminates. ERLANG provides mechanisms for allowing
a process to timeout while waiting for messages and a catch/throw-style exception
mechanism for error handling.

ERLANG is often used in “five nines” high-availability (i.e., 99.999% of the
time available) systems, where down-time is required to be less than five min-
utes per year. Such systems cannot be taken down, upgraded, and restarted when
software patches and upgrades arrive, since that would not respect the availability
requirement. Consequently, ERLANG systems support upgrading code while the
system is running, a mechanism known as dynamic code replacement.

Core Erlang [12, 11] is the official core language for ERLANG, developed to
facilitate compilation, analysis, verification and semantics-preserving transforma-
tions of ERLANG programs. When compiling a module, the compiler reduces the
ERLANG code to Core Erlang as an intermediate form on which static analyses
and optimizations may be performed before low level code is produced. While
ERLANG has unusual and complicated variable scoping rules, fixed-order evalua-
tion, and only allows top-level function definitions, Core Erlang is similar to the
untyped lambda calculus with let- and letrec-bindings, and imposes no re-
strictions on the evaluation order of arguments.

2.2 Heap architectures for concurrent languages using message passing

In [30] we examined three different runtime system architectures for concurrent
language implementations: One process-centric where each process allocates and
manages its private memory area and all messages have to be copied between pro-
cesses, one which is communal and all processes get to share the same heap, and
finally we proposed a hybrid runtime system architecture where each process has
a private heap for local data but where a shared heap is used for data sent as mes-
sages. Figure 1 depicts memory areas of these architectures when three processes
are currently in the system; shaded areas show currently unused memory; the filled
shapes and arrows in Figure 1(c) represent messages and pointers.

For each architecture, we discussed its pros and cons focusing on the architec-
tural impact on the speed of interprocess communication and garbage collection
(GC). We briefly review them below:

Process-centric. This is currently the default configuration of Erlang/OTP. In-
terprocess communication requires copying of messages, thus is an O(n)
operation where n is the message size. Also, memory fragmentation is high.
Pros are that the garbage collection times and pauses are expected to be small
(as the root set need only consist of the stack of the process requiring collec-
tion), and upon termination of a process, its allocated memory area can be
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Figure 1: Different runtime system architectures for concurrent languages.

reclaimed without GC. This property in turn encourages the use of processes
as a form of programmer-controlled regions: a computation that requires a
lot of auxiliary space can be performed in a separate process that sends its
result as a message to its consumer and then dies. This memory architecture
has recently also been exploited in the context of Java; see [22].

Communal (shared heap). The biggest advantage is very fast (O(1)) interpro-
cess communication, simply consisting of passing a pointer to the receiv-
ing process, and low memory requirements due to message sharing. Disad-
vantages include having to consider the stacks of all processes as root set
(expected higher GC latency) and possibly poor cache performance due to
processes’ data being interleaved on the shared heap.

Hybrid. Tries to combine the advantages of the above two architectures: inter-
process communication is fast and GC latency for the frequent collections
of the per-process heaps is expected to be small. Also, this architecture al-
lows for reclamation of data of short-lived, memory-intensive processes to
happen without GC, but simply by attaching the process-local heap to a free
list. However, to take advantage of this architecture, the system should be
able to distinguish between data that is process-local and data which is to be
shared and used as messages. This can be achieved by user annotations on
the source code, by dynamically monitoring the creation of data as recently
proposed in [22], or by a static analysis as we describe in Sect. 4.

Note that these runtime system architectures are applicable to all message passing
concurrent languages. They are generic: their advantages and disadvantages in no
way depend on characteristics of the ERLANG language or the current ERLANG

implementation.

Efficient Memory Management for Message-Passing Concurrency 53



PAPER B:3 THE HYBRID ARCHITECTURE

3 The Hybrid Architecture

A key point in the hybrid architecture is to be able to garbage collect the process-
local heaps individually and without looking at the shared heap. In a multi-threaded
system this allows collection of process-local heaps without any locking or syn-
chronization. If, on the other hand, pointers from the shared area to the local heaps
are allowed, these must then be traced so that what they point to is regarded as live
during a local collection. This could be achieved by a read or write barrier, which
typically incurs a relatively large overhead on the overall runtime. The alternative,
which is our choice, is to maintain as an invariant that there are no pointers from
the shared area to the local heaps, nor from one process-local heap to another; cf.
Figure 1(c).

There are two possible strategies for the implementation of allocation and mes-
sage passing in the hybrid architecture:

Local allocation of non-messages. Here, only data that is known to not be
part of a message may be allocated on the process-local heap, while all other
data is allocated on the shared heap. This gives O(1) process communica-
tion for processes residing on the same node, since all possible messages
are guaranteed to already be in the shared area, but utilization of the local
heaps depends on the ability to decide through program analysis which data
is definitely not shared. This approach is used by [41]. Because it is not
possible in general to determine what will become part of a message, under-
approximation is necessary. In the worst case, nothing is allocated in the
process-local heaps, and the behavior of the hybrid architecture with this
allocation strategy reduces to that of the shared heap architecture.

Shared allocation of possible messages. In this case, data that is likely to
be part of a message is allocated speculatively on the shared heap, and
all other data on the process-local heaps. This requires that the message
operands of all send-operations are wrapped with a copy-on-demand opera-
tion, which verifies that the message resides in the shared area, and otherwise
copies the locally allocated parts to the shared heap. If program analysis can
determine that a message operand must already be on the shared heap, the
copy operation can be statically eliminated. Without such analysis, the be-
havior will be similar to the process-centric architecture, except that data
which is repeatedly passed as message from one process to another will only
be copied once. If the analysis over-approximates too much, most of the
data will be allocated on the shared heap, and we will not benefit from the
process-local heaps; on the contrary, we may introduce unnecessary copying.
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Copying of messages.

If the second strategy is used, as is the case in our implementation of the hybrid
system, we must be prepared to copy (parts of) messages as necessary to ensure
the pointer directionality invariant. Since we do not know how much of a message
needs to be copied and how much already resides in the shared area, we can not
ensure that the space available on the shared heap will be sufficient before we begin
to copy data.

At the start of the copying, we only know the size of the topmost constructor
of the message. We allocate space in the message area for this constructor. Non
pointer data are simply copied to the allocated space, and all pointer fields are
initialized to Nil. This is necessary because the object might be scanned as part of
a garbage collection before all its children have been copied. The copying routine
is then executed again for each child. When space for a child has been allocated
and initialized, the child will update the corresponding pointer field of the parent,
before proceeding to copy its own children.

If there is not enough memory on the shared heap for a constructor at some
point, the garbage collector is called on-the-fly to make room. If a copying garbage
collector is used, as is the case in our system, it will move those parts of the mes-
sage that have already been copied, including the parent constructor. Furthermore,
in a global collection, both source and destination will be moved. Since garbage
collection might occur at any time, all local pointer variables have to be updated
after a child has been copied. To keep the pointers up to date, two stacks are used
during message copying: one for storing all destination pointers, and one for the
source pointers. The source stack is updated when the sending process is garbage
collected (in a global collection), and the destination stack is used as a root set (and
is thus updated) in the collection of the shared heap.

4 Message Analysis

To use the hybrid architecture without user annotations on what is to be allocated
on the local and shared heap respectively, program analysis is necessary. If data
is allocated on the shared heap by default, we need to single out the data which is
guaranteed to not be included in any message, so it can be allocated on the per-
process heap. This amounts to escape analysis of process-local data [7, 9, 17].

If data is by default allocated on the local heaps, we instead want to identify
data that is sure to be part of a message, so it can be directly allocated in the shared
area in order to avoid the copying operation when the message is eventually passed.
We will refer to this special case of escape analysis as message analysis. Note that
since copying will be performed if necessary whenever some part of a message
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c ∈ Const Constants (atoms, integers, pids and nil)
x ∈ Var Variables
e ∈ Expr Expressions
l ∈ Label Labels, including xcall and xlambda
o ∈ Primops Primitive operations (==, >,is nil, is cons, is tuple, . . . )

v ::= c | x

e ::= v | (v1 v2)
l | if v then e1 else e2 | let x = b in e

b ::= v | (v1 v2)
l | (λx′.e′)l | fix (λx′.e′)l | v1:

lv2 | {v1, . . . , vn}
l | hd v |

tl v | elementk v | v1! v2 | receive | spawn (v1 v2)
l |

primop o(v1, ..., vn)

Figure 2: A mini-ERLANG language

could be residing on a process-local heap, both under- and over-approximation of
the set of run-time message constructors is safe.

4.1 The analyzed language

Although our analyses have been implemented for the complete Core Erlang lan-
guage, for the purposes of this paper, the details of Core Erlang are unimportant.
To keep the exposition simple, we instead define a sufficiently powerful language
of A-normal forms [25], shown in Figure 2, with the relevant semantics of the core
language (strict, higher-order, dynamically typed and without destructive updates),
and with operators for asynchronous send, blocking receive, and process spawn-
ing. We also make the simplifying assumption that all primitive operations return
atomic values and do not cause escapement; however, our actual implementation
does not rely on that assumption.

Since the language is dynamically typed, the second argument of a list con-
structor v1:v2 might not always be a list, but in typical ERLANG programs all lists
are proper. Tuple constructors are written {v1, . . . , vn}, for all n ≥ 1. Each con-
structor expression in the program, as well as each call site and lambda expression,
is given an unique label l. All variables in the program are assumed to be uniquely
named.

Recursion is introduced with the explicit fix-point operator fix (λx′.e′)l. Op-
erators hd and tl select the first (head) and second (tail) element, respectively, of
a list constructor. The operator elementk selects the k:th element of a tuple, if the
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tuple has at least k elements.
The spawn operator starts evaluation of the application (v1 v2) as a sepa-

rate process, then immediately continues returning a new unique process identifier
(“pid”). When evaluation of a process terminates, the final result is discarded. The
send operator v1!v2 sends message v2 asynchronously to the process identified by
pid v1, yielding v2 as result. Each process is assumed to have an unbounded queue
where incoming messages are stored until extracted. The receive operator ex-
tracts the oldest message from the queue, or blocks if the queue is empty. This is a
simple model of the concurrent semantics of ERLANG.

4.2 General framework

The analyses we have this far implemented are first-order data-flow analyses, and
are best understood as extensions of Shivers’ closure analysis [40]. Indeed, we
assume that closure analysis has been done, so that:

• The label xcall represents all call sites external to the program, and the label
xlambda represents all possible external lambdas.

• There is a mapping calls: Label → P(Label) from each call site label (in-
cluding xcall) to the corresponding set of possible lambda expression labels
(which may include xlambda).

The domain V is defined as follows:

V0 = P(Label) × {〈〉,>}
Vi = Vi−1 ∪ P(Label) ×

⋃

n≥0
{〈v1, . . . , vn〉 | v1, . . . , vn ∈ Vi−1} for all i > 0

V =
⋃

i≥0
Vi

Let R∗ denote the reflexive and transitive closure of a relation R, and define v
to be the smallest relation on V such that:

(s1, w) vi (s2,>) if s1 ⊆ s2, for all i ≥ 0
(s1, 〈u1, . . . , un〉) vi (s2, 〈v1, . . . , vm〉)

if s1 ⊆ s2 ∧ n ≤ m ∧ ∀j ∈ [1, n] : uj vi−1 vj , for all i ≥ 0
v1 vi v2 if v1 vi−1 v2, for all i > 0

v=
⋃

i≥0
v∗

i

It is then easy to see that 〈V,v〉 is a complete lattice.
Intuitively, our abstract values represent sets of constructor trees, where each

node in a tree is annotated with the set of source code labels that could possibly be
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the origin of an actual constructor at that point. A node (S,>) represents the set of
all possible subtrees where each node is annotated with set S. We identify ⊥ with
the pair (∅, 〈〉).

We define the expression analysis function Ve[[e]] as:

Vv[[c]] = ⊥

Vv[[x]] = Val(x)

Ve[[v]] = Vv[[v]]

Ve[[(v1 v2)
l]] = In(l)

Ve[[if v then e1 else e2]] = Ve[[e1]] t Ve[[e2]]

Ve[[let x = b in e]] = Ve[[e]]

and the bound-value analysis function Vb[[b]] as:

Vb[[v]] = Vv[[v]]

Vb[[(v1 v2)
l]] = In(l)

Vb[[(λx′.e′)l]] = ({l}, 〈〉)

Vb[[fix (λx′.e′)l]] = ({l}, 〈〉)

Vb[[v1:
lv2]] = cons l Vv[[v1]] Vv[[v2]]

Vb[[{v1, . . . , vn}
l]] = tuple l 〈Vv[[v1]], . . . ,Vv[[vn]]〉

Vb[[hd v]] = head(Vv[[v]])

Vb[[tl v]] = tail(Vv[[v]])

Vb[[elementk v]] = elem k Vv[[v]]

Vb[[v1! v2]] = Vv[[v2]]

Vb[[receive]] = ⊥

Vb[[spawn (v1 v2)
l]] = ⊥

Vb[[primop o(v1, ..., vn)]] = ⊥

where

cons l x y = ({l}, 〈x〉) t y

tuple l 〈x1, . . . , xn〉 = ({l}, 〈x1, . . . , xn〉)
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and

head (s, w) =







(s,>) if w = >
v1 if w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

tail (s, w) =







(s,>) if w = >
(s, w) if w = 〈v1, . . . vn〉, n ≥ 1
⊥ otherwise

elem k (s, w) =







(s,>) if w = >
vk if w = 〈v1, . . . vn〉, k ∈ [1, n]
⊥ otherwise

Because lists are typically much more common than other recursive data struc-
tures, we give them a nonstandard treatment in order to achieve decent precision
by simple means. We make the assumption that in all or most programs, cons
cells are used exclusively for constructing proper lists, so the loss of precision for
non-proper lists is not an issue.

Suppose z = cons l x y. If y is (s, 〈v, . . .〉), then the set of top-level construc-
tors of z is s ∪ {l}. Furthermore, head z will yield x t v, and tail z yields z itself.
Thus even if a list is of constant length, such as [A, B, C], we will not be able
to make distinctions between individual elements. The approximation is safe; in
the above example, x v head z and y v tail z.

For each label l of a lambda expression (λx.e)l in the program, define Out(l) =
Ve[[e]]. Then for all call sites (v1 v2)

l in the program, including spawns and the
dummy external call labeled xcall, we have ∀l′ ∈ calls(l) : Out(l′) v In(l), and
also ∀l′ ∈ calls(l) : Vv[[v2]] v Val(x′), when l′ is the label of (λx′.e′). Furthermore,
for each expression let x = b in e′ we have Vb[[b]] v Val(x).

4.3 Termination

Finding the least solution for Val, In, and Out to the above constraint system for
some program by fix-point iteration will however not terminate, because of infinite
chains such as ({l}, 〈〉) @ ({l}, 〈 ({l}, 〈〉) 〉) @ . . . To ensure termination, we use
a variant of depth-k limiting.

We define the limiting operator θk as:

θk (s,>) = (s,>)

θk (s, 〈〉) = (s, 〈〉)

θk (s, 〈v1, . . . , vn〉) = (s, 〈θk−1v1, . . . , θk−1vn〉), if k > 0

θk (s, w) = (labels (s, w),>), if k ≤ 0
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where

labels (s,>) = s

labels (s, 〈〉) = s

labels (s, 〈v1, . . . , vn〉) =
⋃n

i=1
labels vi ∪ s

The rules given in Sect. 4.2 are modified as follows: For all call sites (v1 v2)
l,

∀l′ ∈ calls(l) : θkOut(l′) v In(l), and ∀l′ ∈ calls(l) : θkVv[[v2]] v Val(x′), when l′

is the label of (λx′.e′)l.
Note that without the special treatment of list constructors, this form of approx-

imation would generally lose too much information; in particular, recursion over
a list would confuse the spine constructors with the elements of the same list. In
essence, we have a “poor man’s escape analysis on lists” [37] for a dynamically
typed language.

4.4 Escape analysis

As mentioned, in the scheme where data is allocated on the shared heap by default,
the analysis needs to determine which heap-allocated data cannot escape the cre-
ating process, or reversely, which data can possibly escape. Following [40], we let
Escaped represent the set of all escaping values, and add the following straightfor-
ward rules:

1. In(xcall) v Escaped

2. Vv[[v2]] v Escaped for all call sites (v1 v2)
l such that xlambda ∈ calls(l)

3. Vv[[v2]] v Escaped for all send operators v1! v2

4. Vv[[v1]] v Escaped and Vv[[v2]] v Escaped for every spawn (v1 v2) in the
program

After the fix-point iteration converges, if the label of a data constructor op-
eration (including lambdas) in the program is not in labels(Escaped), the result
produced by that operation does not escape the process.

It is easy to extend this escape analysis to simultaneously perform a more pre-
cise closure analysis than [40], which only uses sets, but doing so here would cloud
the issues of this paper. Also, ERLANG programs tend to use fewer higher-order
functions, in comparison with typical programs in for example Scheme or ML, so
we expect that the improvements to the determined call graphs would not be sig-
nificant in practice. Note that although our analysis is not in itself higher-order, we
are able to handle the full higher-order language with generally sufficient precision.
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4.5 Message analysis

If we instead choose to allocate data on the local heap by default, we want the
analysis to tell us which data could be part of a message, or reversely, which data
cannot (or is not likely to). Furthermore, we need to be able to see whether or not
a value could be a data constructor passed from outside the program.

For this purpose, we let the label unknown denote any such external constructor,
and let Message represent the set of all possible messages.

We have the following rules:

1. ({unknown},>) v In(l) for all call sites (v1 v2)
l such that xlambda ∈

calls(l)

2. Vv[[v2]] v Message for every v1! v2 in the program

3. Vv[[v1]] v Message and Vv[[v2]] v Message for every spawn (v1 v2) in the
program

The main difference from the escape analysis, apart from also tracking un-
known inputs, is that in this case we do not care about values that leave the current
process except through explicit message passing. (The closure and argument used
in a spawn can be viewed as being “sent” to the new process.) Indeed, we want
to find only those values that may be passed from the constructor point to a send
operation without leaving the current process.

If the label of a data constructor is not in labels(Message) when a fix-point is
reached, the value constructed at that point is not part of any message. Furthermore,
for each argument vi to any constructor, if unknown 6∈ labels(Vv[[vi]]), the argument
value cannot be the result of a constructor outside the analyzed program. Note that
since the result of a receive is necessarily a message, we know that it already is
located in the shared area, and therefore not “unknown”.

5 Using the Analysis Information

Depending on the selected scheme for allocation and message passing, the gathered
escape information is used as follows in the compiler for the hybrid architecture:

5.1 Local allocation of non-messages

In this case, each data constructor in the program such that a value constructed at
that point is known to not be part of any message, is rewritten so that the allocation
will be performed on the local heap. No other modifications are needed. Note
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that with this scheme, unless the analysis is able to report some constructors as
non-escaping, the process-local heaps will not be used at all.

5.2 Shared allocation of possible messages

This requires two things:

1. Each data constructor in the program such that a value constructed at that
point is likely to be a part of a message, is rewritten so that the allocation
will be done on the shared heap.

2. For each argument of those message constructors, and for the message argu-
ment of each send-operation, if the passed value is not guaranteed to already
be allocated on the shared heap, the argument is wrapped in a call to copy,
in order to maintain the pointer directionality requirement.

In effect, with this scheme, we attempt to push the run-time copying opera-
tions backwards past as many allocation points as possible or suitable. It may then
occur that because of over-approximation, some constructors will be made glob-
ally allocated although they will in fact not be part of any message. It follows
that if an argument to such a constructor might be of unknown origin, it could be
unnecessarily copied from the private heap to the shared area at runtime.

5.3 Example

In Figure 3, we show an example of an ERLANG program using two processes. The
main function takes three equal-length lists, combines them into a single list of
nested tuples, filters that list using a boolean function test defined in some other
module mod, and sends the second component of each element in the resulting
list to the spawned child process, which echoes the received values to the standard
output.

The corresponding Core Erlang code looks rather similar. Translation to the
language of this paper is straightforward, and mainly consists of expanding pattern
matching, currying functions and identifying applications of primitives such as hd,
tl, !, elementk, receive, etc., and primitive operations like >, is nil and
is cons. Because of separate compilation, functions residing in other modules,
as in the calls to mod:test(X) and io:fwrite(...), are treated as unknown
program parameters.

For this example, our escape analysis determines that only the list constructors
in the functions zipwith3 and filter (lines 13 and 18, respectively) are guar-
anteed to not escape the executing process, and can be locally allocated. Since the
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1 -module(test).
2 -export([main/3]).
3
4 main(Xs, Ys, Zs) ->
5 P = spawn(fun receiver/0),
6 mapsend(P, fun (X) -> element(2, X) end,
7 filter(fun (X) -> mod:test(X) end,
8 zipwith3(fun (X, Y, Z) -> {X, {Y, Z}} end,
9 Xs, Ys, Zs))),

10 P ! stop.
11
12 zipwith3(F, [X | Xs], [Y | Ys], [Z | Zs]) ->
13 [F(X, Y, Z) | zipwith3(F, Xs, Ys, Zs)];
14 zipwith3(F, [], [], []) -> [].
15
16 filter(F, [X | Xs]) ->
17 case F(X) of
18 true -> [X | filter(F, Xs)];
19 false -> filter(F, Xs)
20 end;
21 filter(F, []) -> [].
22
23 mapsend(P, F, [X | Xs]) ->
24 P ! F(X), mapsend(P, F, Xs);
26 mapsend(P, F, []) -> ok.
27
28 receiver() ->
29 receive
30 stop -> ok;
31 {X, Y} -> io:fwrite("˜w: ˜w.\n", [X, Y]), receiver()
33 end.

Figure 3: ERLANG program example.

actual elements of the list, created by the lambda passed to zipwith3 (line 8),
are being passed to an unknown function via filter, they must be conservatively
viewed as escaping.

On the other hand, the message analysis recognizes that only the innermost tu-
ple constructor in the lambda body in line 8, plus the closure fun receiver/0
(line 5), can possibly be messages. If the strategy is to allocate locally by default,
then placing that tuple constructor directly on the shared heap could reduce copy-
ing. However, the arguments Y and Z could both be created externally, and could
thus need to be copied to maintain the pointer directionality invariant. The lambda
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body then becomes

{X, shared 2 tuple(copy(Y), copy(Z))}

where the outer tuple is locally allocated. (Note that the copy wrappers will not
copy data that already resides on the shared heap; cf. Sect. 3.)

6 Performance Evaluation

The default runtime system architecture of Erlang/OTP R9 (Release 9)1 is the
process-centric one. Based on R9, we have also implemented the modifications
needed for the hybrid architecture using the local-by-default allocation strategy,
and included the above analyses and transformations as a final stage on the Core
Erlang representation in the Erlang/OTP compiler. By default, the compiler gen-
erates byte code from which, on SPARC or x86-based machines, native code can
also be generated. We expect that the hybrid architecture will be included as an
option in Erlang/OTP R10.

6.1 The benchmarks

The performance evaluation was based on the following benchmarks:

life Conway’s game of life on a 10 by 10 board where each square is implemented
as a process.

eddie A medium-sized ERLANG application implementing an HTTP parser
which handles http-get requests. This benchmark consists of a number of
ERLANG modules and tests the effectiveness of our analyses under separate
(i.e., modular) compilation.

nag A synthetic benchmark which creates a ring of processes. Each process cre-
ates one message which will be passed on 100 steps in the ring. nag is
designed to test the behavior of the memory architectures under different
program characteristics. The arguments are the number of processes to cre-
ate and the size of the data passed in each message. It comes in two flavors:
same and keep. The same variant creates one single message which is
wrapped in a tuple together with a counter and is then continously forwarded.
The keep variant creates a new message at every step, but keeps received
messages live by storing them in a list.

1Available commercially at www.erlang.com and as open-source at www.erlang.org.

64 Efficient Memory Management for Message-Passing Concurrency



PAPER B:6 PERFORMANCE EVALUATION

Messages Messages copied
Benchmark sent No analysis Analysis

life 8,000,404 100% 0.0%
eddie 20,050 100% 0.3%

nag - same 1000x250 103,006 100% 1.0%
nag - keep 1000x250 103,006 100% 1.0%

Words copied
Words sent No analysis Analysis

life 32,002,806 100% 0.0%
eddie 211,700 81% 34%

nag - same 1000x250 50,829,185 1.6% < 0.02%
nag - keep 1000x250 50,329,185 100% < 0.02%

Table 1: Numbers of messages sent and (partially) copied in the hybrid system.

6.2 Effectiveness of the message analysis

Table 1 shows numbers of messages and words copied between the process-local
heaps and the message area in the hybrid system, both when the message analysis
is not used2 and when it is.

In the life benchmark, we see that while there is hardly any reuse of message
data, so that the plain hybrid system cannot avoid copying data from the local heaps
to the shared area, when the analysis is used the amount of copying shrinks to zero.
This is expected, since the messages are simple and are typically built just before
the send operations. The eddie benchmark, which is a real-world concurrent pro-
gram, reuses about one fifth of the message data, but with the analysis enabled, the
amount of copying shrinks from 81% to 34%. That this figure is not even lower
is likely due to the separate compilation of its component modules, which limits
the effectiveness of the analysis. In the same benchmark, we see that the hybrid
system can be effective even without analysis when message data is heavily reused
(only the top level message wrapper is copied at each send), but the analysis still
offers an improvement. The keep version, on the other hand, creates new message
data each time, and needs the analysis to avoid copying. It is clear from the table
that, especially when large amounts of data are being sent, using message analysis
can avoid much of the copying by identifying data that can be preallocated on the
shared heap.

2The number of messages partially copied when no analysis is used can in principle be less than
100%, but only if messages are being forwarded exactly as is, which is rare.
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Byte code Native code
compilation compilation

Size Time Analysis Time Analysis
Benchmark Lines (bytes) (s) part (s) part

life 201 2,744 0.7 6% 2.3 2%
eddie 2500 86,184 10.5 9% 76.4 1%

nag 149 2,764 0.7 5% 2.2 1%
prettyprint 1081 10,892 0.9 30% 13.1 2%

pseudoknot 3310 83,092 4.2 30% 12.7 9%
inline 2700 36,412 4.0 49% 19.3 7%

Table 2: Compilation and analysis times.

6.3 Compilation overhead due to the analysis

In the byte code compiler, the analysis takes on average 19% of the compilation
time, with a minimum of 3%. However, the byte code compiler is fast and relatively
simplistic; for example, it does not in itself perform any global data flow analyses.
Including the message analysis as a stage in the more advanced HiPE native code
compiler [29], its portion of the compilation time is below 10% in all benchmarks.
ERLANG modules are separately compiled, and most source code files are small
(less than 1000 lines). The numbers for eddie show the total code size and com-
pilation times for all its modules. We have included the non-concurrent programs
prettyprint, pseudoknot, and inline to show the overhead of the analysis on
the compilation of larger single-module applications.

6.4 Runtime performance

All benchmarks were ran on a dual processor Intel Xeon 2.4 GHz machine with
1 GB of RAM and 512 KB of cache per processor, running Linux. Times reported
are the minimum of three runs and are presented excluding garbage collection
times and normalized w.r.t. the process-centric memory architecture. Execution
is divided into four parts: calculating message size (only in the process-centric
architecture), copying of messages, bookkeeping overhead for sending messages,
and mutator time (this includes normal process execution and scheduling, data al-
location and initialization, and time spent in built-in functions).

In the figures, the columns marked P represent the process-centric (private
heap) system, which is the current baseline implementation of Erlang/OTP. Those
marked H represent the hybrid system without any analysis to guide it (i.e., all data
is originally allocated on the process-local heaps), and the columns marked A are
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Figure 5: Performance of the same and keep variants of the nag benchmark.

those representing the hybrid system with the message analysis enabled.
In Figure 4, the life benchmark shows the behavior when a large number of

small messages are being passed. The hybrid system with analysis is about 10%
faster than the process-centric system, but we can see that although enabling the
analysis removes the need for actual copying of message data (cf. Table 1), we
still have a small overhead for the runtime safety check performed at each send
operation (this could in principle be removed), which is comparable to the total
copying time in the process-centric system when messages are very small. We can
also see how the slightly more complicated bookkeeping for sending messages is
noticeable in the process-centric system, and how on the other hand the mutator
time can be larger in the hybrid system. (One reason is that allocation on the
shared heap is more expensive.) In eddie, the message passing time is just a small
fraction of the total runtime, and we suspect that the slightly better performance of
the hybrid system is due to better locality because of message sharing (cf. Table 1).

Figure 5 shows the performance of the nag benchmark. Here, the hybrid sys-
tem shows its advantages compared to the process-centric system when messages
are larger, especially in the same program where most of the message data is
reused. (Naturally, the speedup can be made arbitrarily large by increasing the
message size, but we think that we have used reasonable sizes in our benchmarks,
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and that forwarding of data is not an atypical task in concurrent applications.) In
the keep case, we see that the hybrid system with message analysis enabled is
usually faster than the process-centric system also when there is no reuse. The
excessive copying times in the hybrid system without the analysis show a weak-
ness of the current copying routine, which uses the C call stack for recursion (the
messages in this benchmark are lists).

7 Related Work

Our message analysis is in many respects similar to escape analysis. Escape analy-
sis was introduced by Park and Goldberg [37], and further refined by Deutsch [20]
and Blanchet [6]. So far, its main application has been to permit stack allocation
of data in functional languages. In [7], Blanchet extended his analysis to handle
assignments and applied it to the Java language, allocating objects on the stack
and also eliminating synchronization on objects that do not escape their creating
thread. Concurrently with Blanchet’s work, Bogda and Hölzle [9] used a variant of
escape analysis to similarly remove unnecessary synchronization in Java programs
by finding objects that are reachable only by a single thread and Choi et al. [17]
used a reachability graph based escape analysis for the same purposes. Ruf [39]
focuses on synchronization removal by regarding only properties over the whole
lifetimes of objects, tracking the flow of values through global state but sacrificing
precision within methods and especially in the presence of recursion. It should
be noted that with the exception of [17], all these escape analyses rely heavily on
static type information, and in general sacrifice precision in the presence of recur-
sive data structures. Recursive data structures are extremely common in ERLANG

and type information is not available in our context.
Our hybrid memory model is inspired in part by a runtime system architecture

described by Doligez and Leroy in [21] that uses thread-specific areas for young
generations and a shared data area for the old generation. It also shares character-
istics with the architecture of KaffeOS [3], an operating system for executing Java
programs. Using escape analysis to guide a memory management system with
thread-specific heaps was described by Steensgaard [41].

Notice that it is also possible to view the hybrid model as a runtime system ar-
chitecture with a shared heap and separate regions for each process. Region-based
memory management, introduced by Tofte and Talpin [43], typically allocates ob-
jects in separate areas according to their lifetimes. The compiler, guided by a static
analysis called region inference, is responsible to generate code that deallocates
these areas. The simplest form of region inference places objects in areas whose
lifetimes coincide with that of their creating functions. In this respect, one can view
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the process-specific heaps of the hybrid model as regions whose lifetime coincides
with that of the top-level function invocation of each process, and see our message
analysis as a simple region inference algorithm for discovering data which outlives
their creating processes.

8 Concluding Remarks

Aiming to employ a runtime system architecture which is tailored to the intended
use of data in high-level concurrent languages, we have devised a powerful and
practical static analysis, called message analysis, that can be used to guide the
allocation process. Notable characteristics of our analysis are that it is tailored
to its context, a dynamically typed, higher-order, concurrent language employing
asynchronous message passing, and the fact that it does not sacrifice precision in
the presence of recursion over lists. As shown in our performance evaluation, the
analysis is in practice fast, effective enough to discover most data which is to be
used as a message, and allows the resulting system to combine the best performance
characteristics of both a process-centric and a shared-heap architecture and achieve
(often significantly) better performance.
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Abstract

We present a memory management scheme for a concurrent program-
ming language where communication occurs using message passing with
copying semantics. The runtime system is built around process-local heaps,
which frees the memory manager from redundant synchronization in a multi-
threaded implementation and allows the memory reclamation of process-
local heaps to be a private business and to often take place without garbage
collection. The allocator is guided by a static analysis which speculatively
allocates data possibly used as messages in a shared memory area. To respect
the (soft) real-time requirements of the language, we develop a generational,
incremental garbage collection scheme tailored to the characteristics of this
runtime system. The collector imposes no overhead on the mutator, requires
no costly barrier mechanisms, and has a relatively small space overhead. We
have implemented these schemes in the context of an industrial-strength im-
plementation of a concurrent functional language used to develop large-scale,
highly concurrent, embedded applications. Our measurements across a range
of applications indicate that the incremental collector substantially reduces
pause times, imposes only very small overhead on the total runtime, and
achieves a high degree of mutator utilization.

1 Introduction

Concurrent, real-time programming languages with automatic memory manage-
ment present new challenges to programming language implementors. One of them
is how to structure the runtime system of such a language so that it is tailored to the
intended use of data, so that performance does not degrade for highly concurrent
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(i.e., thousands of processes/threads) applications, and so that the implementation
scales well in a multi-threaded or a multiprocessor setting. Another challenge is
to achieve the high level of responsiveness that is required by applications from
domains such as embedded control and telecommunication systems.

Taking up the latter challenge becomes tricky when automatic memory man-
agement is performed using garbage collection (GC). The naı̈ve “stop-the-world”
approach, where threads repeatedly interrupt execution of an user’s program in or-
der to perform garbage collection, is clearly inappropriate for applications with
real-time requirements. It is also problematic on principle: it introduces a point
of global synchronization between otherwise independent threads — and possibly
also tasks — and provides no guarantees for bounds on the length of the individual
pauses or for sufficient progress by the application; see [15] for a discussion of the
issues that are involved.

Despite the significant progress in developing automatic memory reclamation
techniques with real-time characteristics (see e.g., [5, 10, 15, 32, 36]), each tech-
nique relies on a number of (often implicit) assumptions about the architecture
of the runtime system that might not be the most appropriate ones to follow in
a different context. Furthermore, languages have their own characteristics which
influence the trade-offs associated with each technique. For example, many col-
lectors for object-oriented languages such as Java assume that allocating an extra
header word for each object does not penalize execution times by much and does
not impose a significant space overhead. Similarly, the semantics of a language
may favor the use of a read rather than a write barrier, or may allow for more lib-
eral forms of incremental collection (e.g., based on replication of objects). Finally,
it is clear that the type of GC which is employed interacts with and is influenced
by the allocation which is used. It is very difficult to come up with techniques that
are well-suited for all runtime environments.

Our contributions Our first contribution is in the area of runtime systems ar-
chitectures for highly concurrent languages where communication occurs using
message passing. We present the details of a runtime system whose memory man-
ager splits the allocated memory into areas based on the intended use of data. Its
memory allocator is guided by a static analysis, which speculatively allocates data
possibly used as messages in a shared memory area. Based on the characteristics
of each memory area, we discuss the various types of garbage collection methods
which are employed.

Our second, and main contribution is to develop a generational, incremental
garbage collection scheme for this runtime system. Notable characteristics are that
the collector imposes no noticeable overhead on the mutator, requires no costly
barrier mechanisms, and has a relatively small space overhead.
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Finally, we have implemented this scheme in the context of an industrial-
strength implementation of a concurrent functional language, and we report on
its performance across a range of “real-world” applications. When using the incre-
mental collector, through various optimizations which we discuss in the paper, we
are able to sustain the overall performance of the system, obtain extremely small
pause times, and achieve a high degree of mutator utilization.

2 The Context of our Work

The work reported in this paper is part of an ongoing research project at Uppsala
University in collaboration with the development team of the Erlang/OTP system
at Ericsson. Prior work has resulted in the development of the HiPE(High Perfor-
mance ERLANG) native code compiler [29], which nowadays is fully integrated in
the Erlang/OTP system, and in investigation of the pros and cons of alternative run-
time system architectures for concurrent languages using message passing (work
reported in [30] and briefly reviewed in Sect. 2.2). Chief among the current goals
of the project are to implement static analyses which determine the intended use
of data in highly concurrent languages in order to guide the memory allocator, and
to improve the responsiveness of the resulting system by incorporating garbage
collectors with real-time characteristics and a high rate of mutator utilization.

To set our context, we briefly review the ERLANG language and the runtime
system architectures of the Erlang/OTP system.

2.1 ERLANG and Erlang/OTP

ERLANG [2] is a strict, dynamically typed functional programming language with
support for concurrency, communication, distribution and fault-tolerance. It has
automatic memory management and supports multiple platforms. ERLANG was
designed to ease the programming of soft real-time control systems commonly
developed by the data- and tele-communications industry. Its implementation, the
Erlang/OTP system, has so far been used quite successfully both by Ericsson and
by other companies around the world (e.g., T-Mobile, Nortel Networks) to develop
large (several hundred thousand lines of code) commercial applications.

ERLANG’s basic data types are atoms, numbers (floats and arbitrary precision
integers), and process identifiers; compound data types are lists and tuples. A no-
tation for objects (records in the ERLANG lingo) is supported, but the underlying
implementation of records is the same as tuples. To allow efficient implementa-
tion of telecommunication protocols, ERLANG also includes a binary data type (a
vector of byte-sized data) and a notation to perform pattern matching on binaries.
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There is no destructive assignment of variables or data and consequently cyclic ref-
erences cannot be created. Because recursion is the only means to express iteration,
tail call optimization is a required feature of ERLANG implementations.

Processes in ERLANG are extremely light-weight (significantly lighter than OS
threads) and their number in typical applications is quite large (in some cases up
to 100,000 processes on a single node). ERLANG’s concurrency primitives —
spawn, “!” (send), and receive— allow a process to spawn new processes and
communicate with other processes through asynchronous message passing with
copying semantics. Any data value can be sent as a message and the recipient may
be located on any machine on the network. Each process has a mailbox, essentially
a message queue, where each message sent to the process will arrive. Message
selection from the mailbox occurs through pattern matching. In send operations,
the receiver is specified by its process identifier, regardless of where it is located,
making distribution all but invisible. To support robust systems, a process can
register to receive a message if another one terminates. ERLANG also provides
a mechanism that allows a process to timeout while waiting for messages and a
try/catch-style exception mechanism for error handling.

ERLANG is often used in high-availability large-scale embedded systems (e.g.,
telephone centers), where down-time is required to be less than five minutes per
year. Such systems cannot be taken down, upgraded, and restarted when software
patches and upgrades arrive, since that would not respect their availability require-
ment. Consequently, an ERLANG system comes with support for upgrading code
while the system is running, a mechanism known as dynamic code replacement.
Moreover, these systems typically also require a high-level of responsiveness, and
the soft real-time concerns of the language call for fast garbage collection tech-
niques.

The ERLANG language is small, but its implementation comes with a big set
of libraries. With the Open Telecom Platform (OTP) middleware, ERLANG is fur-
ther extended with standard components for telecommunication applications (an
ASN.1 compiler, the Mnesia distributed database, servers, state machines, process
monitors, tools for load balancing, etc.), standard interfaces such as CORBA and
XML, and a variety of communication protocols (e.g., HTTP, FTP, SMTP, etc.).

2.2 The three runtime systems of Erlang/OTP

Until quite recently, the Erlang/OTP runtime system was based on a process-centric
architecture; that is, an architecture where each process allocates and manages
its private memory area. The main reason why this memory allocation scheme
was chosen was that it was believed it results in lower garbage collection latency.
Wanting to investigate the validity of this belief, in [30] we examined two alterna-
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tive runtime system architectures for implementing concurrency through message
passing: one which is communal and all processes get to share the same heap, and
a hybrid scheme where each process has a private heap for process-local data but
where a shared heap is used for data sent as messages and thus shared between pro-
cesses. Nowadays, all three architectures are included in the Erlang/OTP release.
We briefly review their characteristics.

Process-centric In this architecture, interprocess communication requires copying
of messages and thus is an O(n) operation where n is the message size.
Memory fragmentation tends to be high. Pros are that the garbage collection
times and pauses are expected to be small (as the root set need only consist
of the stack of the process requiring collection), and upon termination of a
process, its allocated memory area can be reclaimed in constant time (i.e.,
without garbage collection).

Communal The biggest advantage is very fast (O(1)) interprocess communica-
tion, simply consisting of passing a pointer to the receiving process, reduced
memory requirements due to message sharing, and low external fragmenta-
tion. Disadvantages include having to consider the stacks of all processes
as part of the root set (resulting in increased GC latency) and possibly poor
cache performance due to processes’ data being interleaved on the shared
heap. Furthermore, the communal architecture does not scale well to a
multi-threaded or multi-processor implementation, since locking would be
required in order to allocate in and collect the shared memory area in a paral-
lel setting; see [15] for an excellent recent treatment of the subject of parallel
real-time GC.

Hybrid An architecture that tries to combine the advantages of the above two
architectures: interprocess communication can be fast and GC latency for
the frequent collections of the process-local heaps is expected to be small.
No locking is required for the garbage collection of the process-local heaps,
and the pressure on the shared heap is reduced so that it does not need to be
garbage collected as often. Also, as in the process-centric architecture, when
a process terminates, its local memory can be reclaimed by simply attaching
it to a free-list.

Note that these runtime system architectures are applicable to all concurrent sys-
tems that use message passing. Their advantages and disadvantages do not depend
in any way on characteristics of the ERLANG language or its current implementa-
tion.

In this paper we concentrate on the hybrid architecture. The reasons are both
pragmatic and principled: Pragmatic because this architecture behaves best in prac-
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tice, and principled because it combines the best performance characteristics of the
other two runtime system architectures. Also, the garbage collection techniques
developed in its context are applicable to the other architectures with only minor
adjustments.

Assumptions Throughout the paper, for simplicity of presentation, we make the
assumption that the system is running on an uniprocessor, and that message passing
and garbage collection, although incremental operations, have control over their
preemption (i.e., although they have to respect their work- or time-based quanta,
they cannot be interrupted by the scheduler at arbitrary points when collecting).

3 Organization of the Hybrid Architecture

Figure 1 shows an abstraction of the memory organization in the hybrid architec-
ture. In the figure, areas with lines and stripes show currently unused memory; the
shapes in heaps and arrows represent objects and pointers. In the shown snapshot,
three processes (P1, P2, and P3) are present. Each process has a process control
block (PCB) and a contiguous private memory area with a stack and a process-local
heap growing toward each other. The size of this memory area is either specified as
an argument to the spawn primitive, set globally by the user for all processes, or
defaults to a small system constant (currently 233 words). Besides the private ar-
eas, there are two shared memory areas in the system; one used for binaries above
a certain size (i.e., a big object area), and a shared heap area, intended to be used
for data sent between processes in the form of messages. We refer to the latter area
as the message area.

3.1 The pointer directionality invariants

A key point in the hybrid architecture is to be able to garbage collect the process-
local heaps individually, without looking at the shared areas. In a multi-threaded
system, this allows collection of local heaps without any locking or synchroniza-
tion. If pointers from the shared areas to the local heaps were allowed, these would
then have to be traced so that what they point to would be considered live during
a local collection. This could be achieved by a write barrier, but we want to avoid
the overhead that this incurs. The alternative, which is our choice, is to maintain as
an invariant of the runtime system that there are no pointers from the shared areas
to the local heaps, nor from one process-local area to another. Figure 1 shows all
types of pointers that can exist in the system. In particular:

• The area for binaries contains very few references and these are only from the
header of a binary object to the start of the actual binary; these are shown in
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Figure 1: References allowed in the hybrid architecture.

the figure. Note that these pointers will not be seen by the garbage collector.

• The message area only contains references to the shared area for binaries or
to objects within the message area itself.

• Neither the shared area for binaries nor the message area contains any cyclic
data.

The pointer directionality property for the message area is also crucial for our
choice of memory allocation strategy, since it makes it easy to test at runtime
whether or not a piece of data resides in the message area by making a simple
O(1) pointer comparison. (There are several possible implementations with this
complexity, the simplest being mapping the message area to a single contiguous
block of memory.)

3.2 Allocation in the hybrid architecture

To take full advantage of the organization of the hybrid architecture, the system
needs to be able to distinguish between data which is process-local and data which
is to be shared, that is, used as messages. This can be achieved by user annotations
on the source code, by dynamically monitoring the creation of data as proposed
in [22], or by the static message analysis that we have described in [13] and inte-
grated in the hybrid runtime system configuration of Erlang/OTP.

For the purposes of this paper, the details of the message analysis are unimpor-
tant and the interested reader is referred to [13]. Instead, it suffices to understand
how the analysis guides allocation of data in the compiler. The allocation can be
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described as allocation by default on the local heap and shared allocation of pos-
sible messages. More specifically, data that is likely to be part of a message is
allocated speculatively on the shared heap, and all other data on the process-local
heaps. To maintain the pointer directionality invariants, this in turn requires that the
message operands of all send operations are wrapped with a copy-on-demand op-
eration, which verifies that the message resides in the shared area (as noted above,
this can be an O(1) operation), and otherwise copies the locally allocated parts to
the shared heap. However, if the message analysis can determine that a message
operand must already be on the shared heap, the test can be statically eliminated.

Note that the copying semantics of message passing in ERLANG and the ab-
sence of destructive updates allows the message analysis to safely both under-
approximate and over-approximate use of data as messages. With under-
approximation, the data will be copied to the message area in the send operation
and the behavior of the hybrid architecture will be similar to the process-centric ar-
chitecture, except that data which is repeatedly passed from one process to another
will only be copied once. On the other hand, if the analysis over-approximates too
much, most of the data will be allocated on the shared heap, and we will not ben-
efit from the process-local heaps; that is, data will need to be reclaimed by global
garbage collection.

3.3 Allocation characteristics of ERLANG programs

In the eyes of the memory manager, the ERLANG heap only contains two kinds of
objects: cons cells and boxed objects. Boxed objects are tuples, arbitrary precision
integers, floats, binaries, and function closures. Boxed objects contain a header
word which directly or indirectly includes information about the object’s size. In
contrast, there is no header word for cons cells. Regarding heap allocation, we have
run a wide range of ERLANG programs and commercial applications we have ac-
cess to, and have discovered that nearly three quarters (73%) of all heap-allocated
objects are cons cells (of size two words). Out of the remaining ones, less than 1%
is larger than eight words. Although these numbers have to be taken with a grain
of salt, since each application has its own memory allocation characteristics, it is
quite safe to conclude that, in contrast to, for example a Java implementation, there
is a significant number of heap-allocated objects which are small in size and do not
contain a header word. Adding an extra word to every object significantly penal-
izes execution and space consumption and is therefore not an option we consider.
How this constraint influences the design of the incremental garbage collector is
discussed in Section 5.
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4 Garbage Collection in the Hybrid Architecture

We discuss the garbage collection schemes that are employed based on the charac-
teristics and intended use of each memory area.

4.1 Garbage collection of process-local heaps

As mentioned, when a process dies, its allocated memory area can be reclaimed
directly without the need for garbage collection. This property in turn encourages
the use of processes as a form of programmer-controlled regions: a computation
that requires a lot of auxiliary space can be performed in a separate process that
sends its result as a message to its consumer and then dies. In fact, because the de-
fault runtime system architecture has for many years been the process-centric one,
a lot of ERLANG applications have been written and fine-tuned with this memory
management model in mind.1

When a process does run out of its allocated memory, the runtime system
garbage collects its heap using a generational Cheney-style semi-space stop-and-
copy collector [14]. (Data has to survive two garbage collections to be promoted
to the old generation.) Also when running native code instead of byte code, the
collector is guided by stack descriptors (also known as stack maps) and the root
set is further reduced by employing generational stack scanning [16], an opti-
mization which reduces the cost of scanning the root set by reusing information
from previous GC scans. Although this collector cannot give any real-time guaran-
tees, pause times when collecting process-local heaps are typically not a problem
in practice. This is because most collections are minor and therefore quite fast,
and as explained above many ERLANG applications have been programmed to use
processes for specific, fine-grained tasks that require a relatively small amount of
memory. Moreover, because process-local heaps can be collected independently,
in a multi-threaded implementation, pauses due to collecting process-local heaps
do not jeopardize the responsiveness of the entire system as the mutator can service
other processes which are in the ready queue.

4.2 Garbage collection of binaries

The shared area for (large) binaries is collected using reference counting [19]. The
count is stored in the header of binaries and increased whenever a new reference
to a binary is created (when a binary is for example copied to the message area
in the send operation). Each process maintains a remembered list of such pointers

1In this respect, process-local heaps are very much like arenas used by the Apache Web server [42] to deal-
locate all the memory allocated by a Web script once the script has terminated.

Efficient Memory Management for Message-Passing Concurrency 81



PAPER C:4 GARBAGE COLLECTION IN THE HYBRID ARCHITECTURE

to binaries stored in the binary area. When a process dies, the reference counts of
binaries in this remembered list are decreased. A similar action happens for refer-
ences which are removed from the remembered list as part of garbage collection.
Since cycles in binaries are not possible, cycle collection is not needed and garbage
collection of binaries is effectively real-time.

4.3 Garbage collection of the message area

Since the message area is shared between processes, its garbage collection requires
global synchronization. The root set is typically large since it consists of both the
stacks and the process-local heaps of all processes in the system. As a result, pause
times for collecting the message area can be quite high.

This situation can be ameliorated as follows:

• By splitting the message area into generations and performing generational
collection on this area. In fact, one can employ a non-moving collector (such
as mark-sweep ) for the old generation to avoid the cost of repeatedly having
to copy long-lived objects. (We still prefer to manage the young generation
by a copying collector, because allocation is faster in compacted spaces.)

• By performing an optimization, called generational process scanning, which
is the natural extension of generational root scanning from the sequential to
the concurrent setting. More specifically, similarly to how generational stack
scanning tries to reduce the root set which has to be considered during a
process-local GC to only the “new” part of the stack, generational process
scanning tries to reduce the number of processes whose memory areas are
considered part of the root set. In implementation terms, the runtime system
maintains information about which processes have been active (or received a
message) since the last garbage collection and considers only those processes
as part of the root set during the frequent minor collections.

All these techniques are used in the hybrid architecture and are quite effective.
However, they can of course not provide any real-time guarantees — not even
soft real-time ones — and cannot prevent GC of the message area becoming a
bottleneck in highly concurrent applications. For the message area, we need a GC
method that is guaranteed to result in low pause times.

Note that reference counting is not the most appropriate such method. The
main reason is that one cannot wait until a process dies to decrease reference
counts of messages that a process has sent to or received from other processes;
consider for example the case of a Web server servicing requests. Furthermore ref-
erence counting typically imposes a non-negligible overhead. A different real-time
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Figure 2: Organization of the message area.

or incremental GC is called for. We describe the one we designed and chose to
implement in the next section.

5 Incremental Collection in the Message Area
Organization of the message area Figure 2 shows the organization of the mes-
sage area when performing incremental GC of the young generation.

• The old generation, which is collected by a mark-sweep collector, consists
of n pages (each page being 32Kwords in size). Allocation uses first-fit
in the free-list. If there is not a large enough free area in this list, a garbage
collection of the old generation is triggered. If, after a non-moving collection
cycle, there is less than 25% free in the old generation, we allocate a new
page in order to reduce the risk of triggering another collection soon.

• The young generation consists of two equal-sized parts, the nursery and the
from-space. The size of each part, Σ, is constant and in our implementation
we have chosen Σ = 100K words. The nursery is used by the mutator as
the allocation area during a collection cycle. The from-space is used in the
incremental copying collection; the to-space is the old generation.

• We also use an area (currently an array of size Σ) of forwarding pointers
(denoted as Fwd in Figure 2). The reason is that the mutator does not ex-
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pect to find forwarding pointers in the place of objects. Since the mutator
can access objects in the from-space during a collection cycle, forwarding
pointers cannot be stored in this area. This would require either making the
mutator perform a test on each heap pointer dereferencing and paying the
corresponding cost, or the systematic use of indirection (as in [10]) and em-
ploying a read barrier mechanism to maintain the to-space invariant (as for
example in [5]), which also has a non-trivial associated cost.

In our implementation, the size of the area for the forwarding pointers is
constant. It could be further reduced if a different (resizeable) data structure
is used; however, we prefer the simplicity of implementation and constant
access time that an array provides.

• Finally, we also use a bit array (the black-map) and a pointer into the nursery
(the allocation limit), whose purposes and uses we describe below.

Terminology We use the term collection stage to refer to a contiguous period
of incremental garbage collection, and the term collection cycle to refer to a com-
plete collection of the young generation. After a collection cycle has finished, all
live data has been rescued from the nursery and moved to the old generation. A
collection cycle may include a non-moving collection cycle, since it is the garbage
collector of the young generation that allocates in the old generation and is thus the
one to trigger its collection.

5.1 The incremental collection algorithm

A new collection cycle begins with the from-space and the nursery switching roles
and with all forwarding pointers being reset.

All processes are then marked as active (i.e., are placed in the active queue),
the first process from this queue is picked up and a snapshot of its root set is
taken. (The process does not need to be suspended to have its snapshot taken.)
When all roots for this process have been rescued, the process is removed from
the queue. During a collection cycle, inactive processes may become active again
only by receiving a message from another active process. This effectively acts as
a write barrier, albeit one with an extremely low cost; namely, one extra test for
each entire send operation. (Note that if a sender process is not active, then either
the message has been allocated in the message area after the collection has started,
and thereby placed in the nursery, or the message has already been copied to the
old generation.) The collection cycle will scan the root set as long as there are
active processes that contain “new” live objects (i.e., objects in the from-space not
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already copied to the to-space). During a collection cycle, the collector might of
course yield to the mutator as described below.

When a live object is found, and this object has not yet been forwarded, it is
copied to the old generation and added to a stack of gray objects. A forwarding
pointer for this object is placed in the forwarding pointer array. If the object has
been previously forwarded, we update its reference in the root set to point to the
new location for the object. When the active queue is empty, the collection cycle
continues to process all the gray objects, in order to rescue their children. This in
turn possibly puts more objects on the gray stack.

If during collection of the young generation, the old generation overflows, its
non-moving incremental garbage collector is triggered. This collector uses its own
tricolor scheme [32] implemented as follows. We use a stack of references to keep
track of gray objects. We also use a bit array (the black-map) to mark objects as
black (i.e., fully processed). The black-map is needed since there is no room for
any mark-bits in the actual objects.

At the end of the collection cycle we also have to look through the objects in
the nursery to update references to data which has been moved from the from-space
by the collection (or possibly copy these objects). This is because the mutator can
create references from objects in the nursery to objects in the from-space during a
collection cycle.

5.1.1 Interplay between the mutator and the collector

In incremental tracing garbage collectors, the amount of work to be done in one
collection cycle depends on the amount of live data when a snapshot of the root set
is taken. Since we can not know this quantity, we have to devise a mechanism that
allows us to control how much allocation the mutator is allowed to do between two
collection stages. (Relying on user-annotations to specify such a quantity is nei-
ther safe nor a “user-friendly” option in the typical multi-thousand line application
domain of ERLANG.)

As with all incremental collectors, a crucial issue is to decide how and when
the switch between the mutator and the collector will occur. We use an allocation
limit to interrupt the mutator (cf. Figure 2). When the mutator reaches this limit the
collector is invoked. This is a cheap way to control the interleaving and furthermore
imposes no additional overhead on the mutator. This is because, even in a non-
incremental environment, the mutator checks against a limit anyway (the end of the
nursery, Nlimit). The allocation limit is updated in the end of each collection stage
based on a calculated estimate as described below. To influence the interaction
between the mutator and the collector, the user can choose between a work-based
and a time-based approach, which update the allocation limit in different ways.
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5.1.2 The work-based collector

The underlying idea is simple. In order for the mutator to allocate wM words of
heap, the collector must rescue w words of live data, where wM ≤ w. In our
implementation, the value of w is user-specified. (However, regardless of the user
setting, we ensure that wM ≤ w in all collection stages.) The choice of w naturally
affects the pause times of the collector; see Section 6.2. After each collection stage
the allocation limit is updated to Ntop + w, where Ntop denotes the top of the
nursery (i.e., its first free word; cf. Figure 2). Note that this is exact, rather than an
estimate as in the case of the time-based collector below.

Since the area we collect, the from-space, has the same size as the nursery we
can guarantee that the collection cycle ends before the nursery overflows and the
mutator cannot allocate further. In fact, since this is a young generation and most
of its data tends to die young, the collection cycle will most often be able to collect
the from-space before significant allocation takes place in the nursery.

5.1.3 The time-based collector

In the time-based collector, the collector time quantum, denoted t, determines the
time interval of each collection stage. After this quantum expires, the collector is
interrupted and the mutator is resumed. In our implementation, t is specified (in
µsecs) by the user based on the demands of the application.2

To dynamically adjust the allocation limit, we keep track of the amount of work
done during a collection stage. We denote this by ∆GC and since this is a tracing
collector it is expressed in number of live words rescued, that is,

∆GC = rescued after GC − rescued before GC

Assuming the worst case scenario (that the entire from-space of size Σ is live), at
the end of a collection stage we (conservatively) estimate how much of the total
collection we managed to do. Then we, again conservatively, estimate how many
more collection stages it will take to complete the collection cycle, provided we
are able to continue to rescue live data at the same rate.

GC stages =
Σ − rescued after GC

∆GC

We now get:

wM =
f

GC stages

2When needed, the collector is allowed some “free” extension, in order to update the reference counts of
binaries and possibly clean up after itself. This deadline extension is typically very small; cf. Section 6.2.
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where f is the amount of free memory in the nursery. Thus, we can now update
the allocation limit to Ntop + wM .

5.2 Some optimizations

In the beginning of the collection cycle, all processes in the system are put in the
active queue, in a more or less random order.3 However, each time an active process
receives a message, it is moved last in the queue (as if it were reborn). This way,
we keep the busiest processes last in the queue and scan them as late as possible.
The rationale for wanting to postpone their processing is three-fold:

1. avoid repeated re-activation of message-exchanging processes;

2. allow processes to execute long enough for their data to become garbage;

3. give processes a chance to die before we take a snapshot of their root set; in
this way, we might actually avoid considering these processes.

Another way of postponing processing members of the active queue is to process
the stack of gray objects after we are finished with each process (instead of pro-
cessing all processes in the active queue first and then processing the complete gray
stack).

In minor collections of the shared message area, we remember the top of the
heap for each process and only consider as part of their root set data that has been
created since the process was taken off the active-queue.

Finally, a very important optimization is to have process-local garbage collec-
tions record pointers into the message area in a remembered set. This way we avoid
scanning the old generation of their local heaps.

5.3 Characteristics of the collector

First of all note that the collector does not require any header word in the ob-
jects in order to perform incremental copying collection in the young generation.
Therefore, it imposes no overhead to allocation. The collector instead uses an extra
space, namely the forwarding area, whose size is bounded by Σ. Recall that Σ does
not increase during GC and is not affected by the allocation characteristics of the
program which is being executed. In the old generation, the only extra overhead
is one bit per word for the black-map. A dynamically resizeable stack is used for
the gray objects. Note that for the frequent collections of the young generation, the
size of this gray stack is bounded by Σ/2. The space overhead of the incremental
collector is quite low.

3The queue order is actually determined by the age of the processes; oldest first.
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Benchmark Processes Messages
worker 403 1,650
msort q 16,383 49,193
adhoc 137 246,021
yaws 420 2,275,467
mnesia 1,109 2,892,855

Table 1: Concurrency characteristics of benchmarks.

Without incrementality, the collector behaves as a snapshot-at-the-beginning
algorithm [47, Section 3.3.1]. As explained above, in the incremental collector we
postpone taking the snapshot of processes in the active queue as long as possible.
By incrementally taking partial snapshots of the root set, that is, only one process
at a time, we allow the remaining processes to create more garbage as we collect
the process at the head of the queue. This means that we will most likely collect
more garbage than a pure snapshot-at-the-beginning collector.

An unfortunate side-effect of the root set minimization effort described above is
that since we do not actually scan the old generation of process-local heaps during
root-scanning, but only the set of references to the message area recorded during
process-local garbage collection, some of the rescued objects might actually be
already dead at the start of the collection. An object may therefore be kept in the
message area for a number of collection cycles until a major process-local garbage
collection updates the remembered set of objects (or the process dies) and triggers
the next collection cycle of the message area to finally remove the object. This
however is an inherent drawback of all generational schemes.

6 Measurements

The benchmarks For the performance evaluation we used two synthetic bench-
marks and three ERLANG applications with a high degree of concurrency from
different domains:
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worker Spawns a number of worker processes and waits for them to return their
results. Each worker builds a data structure in several steps, generating a
large amount of local, temporary data. The final data structure is sent to the
parent process. This is an allocation-intensive program whose adversarial
nature is a challenge for the incremental garbage collector.

msort q A distributed implementation of merge sort. Each process receives a
list, implicitly splits it into two sublists by indexing into the original list,
and spawns two new processes for sorting these lists (which are passed to
the processes as messages). Although this program takes a very small time
to complete, we use it as a benchmark because it spawns a large number of
simultaneously live processes (cf. Table 1) and thus its root set is quite large.

adhoc A framework for genetic algorithms. It solves deceptive problems
while simulating a population of chromosomes using processes and applies
crossovers and mutations. The AdHOC program4 consists of about 8,000
lines of ERLANG code.

yaws A high-performance multi-threaded HTTP Web server where each client is
handled by a separate ERLANG process. Yaws5 contains about 4,000 lines
of code (excluding calls to functions in Erlang/OTP libraries such as HTTP,
SSL, etc.). We used httperf [35] to generate requests for Yaws.

mnesia The standard TPC-B database benchmark for the Mnesia distributed
database system. Mnesia consists of about 22,000 lines of ERLANG code.
The benchmark tries to complete as many transactions as possible in a given
time quantum.

Some more information on these benchmarks (number of processes spawned
and messages sent between them) is shown in Table 1.

The performance evaluation was conducted on a dual processor Intel Xeon
2.4 GHz machine with 1 GB of RAM and 512 KB of cache per processor, run-
ning Linux. The kernel has been enhanced with the perfctr driver [38], which
provides access to high-resolution performance monitoring counters on Linux and
allows us to measure GC pause times in µs.

4ADHOC: Adaptation of Hyper Objects for Classification.
5YAWS : Yet Another Web Server; see yaws.hyber.org.
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Local GCs Message area GCs
Benchmark w = 2 w = 100 w = 1000 t = 1000

worker 6.7 K 2.5 M 98.7 K 10 K —
msort q 357 79,190 1,716 174 222
adhoc 1.1 M 54,934 3,737 390 —
yaws 2.1 M 32,204 1,393 290 1,551
mnesia 892 K 12,581 671 219 775

Table 2: Number of GCs when using the two incremental collectors.

Benchmark Mutator Local GC MA GC
worker 3,591 2,756 1,146
msort q 174 3 29
adhoc 61,578 7,848 27
yaws 240,985 11,359 153
mnesia 53,276 4,487 88

Table 3: Mutator and total GC times (in ms) using the non-incremental collector.

6.1 Runtime and collector performance

To provide a base line for our measurements, Table 3 and Table 4 show time spent
in the mutator, garbage collection times, and GC pause times for all benchmarks
when using the non-incremental collector for the message area. Observe that the
times in Table 3 are in ms while the times in Table 4 are in µs. Table 5 confirms
that the time spent in the mutator and in performing garbage collection of process-
local heaps is not affected by using the incremental collector for the message area.
Depending on the configuration, the overhead for the incremental collector com-
pared to the non-incremental collector ranges from a few percent to 2.5–3 times
for most programs. The overhead is higher (5.6 times) for worker which is a pro-
gram that was constructed to spend a significant part of its time allocating in (and
garbage collecting) the message area.

Considering total execution time, the performance of applications is practically
unaffected by the extra overhead of performing incremental GC in the message
area. Even for the extreme case of worker, which performs 2.5 million incremen-
tal garbage collections of the message area when w = 2 (cf. Table 2), its total
execution time is 1.7 times that with non-incremental GC.

90 Efficient Memory Management for Message-Passing Concurrency



PAPER C:6 MEASUREMENTS

Local GC (µs) Message area GC (µs)
Benchmark Max Mean G.Mean Max Mean G.Mean
worker 7,673 395 68 178,916 89,811 77,634
msort q 577 9 4 16,263 9,807 11,646
adhoc 88 6 7 1,650 1,242 1,174
yaws 370 8 7 1,088 649 636
mnesia 4,722 4 5 1,413 485 458

Table 4: Pause times (in µs) using the non-incremental collector.

Message area (MA) GC
Benchmark Mutator Local GC w = 2 w = 100 w = 1000

worker 3,560 2,798 6,445 6,296 6,341
msort q 164 3 54 34 33
adhoc 61,045 8,194 244 203 78
yaws 237,629 11,728 373 374 242
mnesia 52,906 4,439 182 164 156

Table 5: Mutator times and total GC times (in ms) using the incremental (work-
based) collector.
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Figure 3: Distribution of pause times (in µs) for the work-based incremental collector.
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Local GC (µs) Message area GC (µs)
Benchmark Max Mean G.Mean w Max Mean G.Mean
worker 6,891 390 68 2 70,337 2 0

100 83,450 63 7
1000 96,450 635 72

msort q 611 8 4 2 3,089 0 0
100 3,142 19 11

1000 4,511 204 110
adhoc 125 6 7 2 1,029 3 2

100 1,051 53 46
1000 1,233 202 158

yaws 266 8 8 2 1,202 9 1
100 1,324 268 36

1000 1,586 836 853
mnesia 4,751 4 5 2 1,014 14 1

100 1,027 244 43
1000 1,212 714 787

Table 6: Pause times (in µs) for the incremental (work-based) collector with dif-
ferent values of w.

6.2 Garbage collection pause times

Table 6 shows pause times for the incremental work-based collector using three dif-
ferent choices of w, collecting 2, 100, and 1000 words, respectively. As expected,
for most benchmarks, the incremental garbage collector significantly lowers GC
pause times, both their maximum and mean values (the columns titled G.mean
show the geometric mean of all pause times) compared with the non-incremental
collector (cf. the last three columns of Table 4). The maximum pause times of
yaws (for w = 100 and 1000) are the only slight exception to this rule, and the
only explanation we can offer for this behavior is that perhaps message live data is
hard to come by in this benchmark.

The mean GC pause time values, in particular the geometric means, show a
more consistent behavior. In fact, one can see a correlation between the value of w
and the order of pause times in µs.

The distribution of pause times (in µs) for the benchmarks using the work-
based incremental collector is shown in Figure 3.6 The majority of collection stages
are very fast, and only a very small percentage of the collections might be a prob-
lem for a real-time application. On the other hand, a work-based collector whose

6mnesia is not included in Figure 3 as its pause times do not show anything interesting.
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(c) mnesia (t = 1000µs)
Figure 4: Counts of pause times (in µs) for the time-based incremental collector.

notion of work is defined in terms of “words rescued” naturally cannot guarantee
an upper limit on pause times, as live data to rescue might be hard to come by.

A time-based incremental collector can in principle avoid this problem; see [5].
Care of course must be taken to detect the case when the mutator is allocating
faster than the collector can reclaim, and take an appropriate action. Figure 4 (cf.
also Table 2) shows counts of GC pauses when running three of the benchmarks
programs using the time-based incremental garbage collector with a t value of 1ms
(1000µs). As mentioned in Footnote 2, when needed, the collector is allowed some
small deadline extension, in order to possibly clean up after itself. This explains
why there is a small number of values above 1000µs. Note that in Figures 4(c)
and 4(b) the number of GCs (the Y axis) is in logarithmic scale.

6.3 Mutator utilization

In any time window, the notion of mutator utilization is defined as the fraction of
time that the mutator executes; see [15].

Figure 5 shows mutator utilization for the programs we used as benchmarks
when using the work-based incremental collector for different values of w. The
two synthetic benchmarks exhibit interesting patterns of utilization. As expected,
the worker benchmark suffers from poor mutator utilization since it is designed
to be allocation-demanding and be a serious challenge for the incremental collec-
tor. (The first interval of high utilization is the time before the first collection is
triggered and the remaining two are periods after a collection cycle has finished
and there is free space left in the nursery that the mutator can use for its allocation
needs.) Similarly, the mutator utilization of msort q drops significantly when live
data in the message area is hard to come by. On the other hand, the mutator utiliza-
tion of the three “real” programs is good — even for w = 2, although for yaws
and mnesia this is apparent only with the time axis stretched out; Figure 6 shows
the same data as Figure 5(k) but only for a portion of the total time needed to run
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(b) worker (w = 100)
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(c) worker (w = 1000)
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(d) msort q (w = 2)
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(e) msort q (w = 100)
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(f) msort q (w = 1000)
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(g) adhoc (w = 2)
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(h) adhoc (w = 100)
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(i) adhoc (w = 1000)
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(j) yaws (w = 2)
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(k) yaws (w = 100)
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(l) yaws (w = 1000)
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(m) mnesia (w = 2)
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(n) mnesia (w = 100)
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Figure 5: Mutator utilization for the work-based incremental collector.
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Figure 6: Mutator utilization of yaws (w = 100) for the work-based incremental
collector shown in detail.
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(b) yaws
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(c) mnesia

Figure 7: Mutator utilization for the time-based (t = 1000µs) incremental collector.

the benchmark.
Mutator utilization for the time-based incremental collector is shown in Fig-

ure 7. For both yaws (mainly) and mnesia the utilization using the time-based
collector is slightly worse than that when using the work-based one. The choice of
an otherwise small, but compared with the total execution time relatively high in
this case, t value (1ms) jeopardizes the mutator utilization of msort q.

7 Related Work

Runtime system organization By now, several works have suggested detecting
thread-local objects via static escape analysis, mainly of Java programs; notable
among them are [8, 18, 39]. The goal has been to identify, conservatively and at
compile time, the objects that are only going to be accessed by their creating thread
and allocate them on the thread-local stack, thereby avoiding synchronization for
these objects. In fact, the analysis of [39] is exploited in [41] by suggesting the
use of thread-local heap chunks for non-escaping objects and a shared (portion of
the) heap for all other data. Thread-local heaps for Java have also been advocated
in [22], this time guided by information gathered by a profiler rather than by static
analysis.

Note that, mainly because of the differences in the semantics of Java and
ERLANG, all the above works attack the problem of memory allocation in the op-
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posite direction than we do. Rather than allocating in thread-local heaps by default
and using analysis to determine which objects are possibly shared, they try to deter-
mine objects that will only be accessed by their creating thread and allocate them in
a thread-local memory area. In contrast, the message analysis that guides our allo-
cator, identifies data that will probably be used in a message, enabling a speculative
optimization that allocates data in the shared message area, thereby eliminating the
need for copying at send time and making it possible to remove run-time checks
altogether. The closest relative of our work is the memory architecture described
in [21] which uses thread-local allocation for immutable objects in Caml programs.

Memory management of ERLANG programs The soft real-time concerns of
the ERLANG language call for bounded-time GC techniques. One such technique,
based on a mark-sweep algorithm taking advantage of the fact that the heap in an
ERLANG system is unidirectional (i.e., is arranged so that the pointers point in only
one direction), has been described in [1], but imposes a significant overhead and
was never fully implemented. Similarly, [24] describes the design of a near-real-
time compacting collector in the context of the Gambit-C Scheme compiler. This
garbage collector was intended to be used in the Etos (ERLANG to Scheme) system
but never made it to an Etos distribution.

Incremental and real-time GC techniques In the context of other (strict, con-
current) functional language implementations, the challenge has been to achieve
low GC latency without paying the full price in performance that a guaranteed
real-time garbage collector usually requires. Notable among them is the quasi real-
time collector of Concurrent Caml Light [21] which combines a fast, asynchronous
copying collector for the thread-specific young generations with a non-disruptive
concurrent mark-sweep collector for the old generation (which is shared among all
threads).

Many concurrent (real-time) garbage collectors for functional languages have
also been proposed, either based on incremental copying [10, 27], or on replica-
tion [36] (see also [15] for a multi-processor version of one such collector). The
main difference between them is that incremental collectors based on copying re-
quire a read barrier, while collectors based on replication do not. Instead, they cap-
italize on the copying semantics of (pure) functional programs, and incrementally
replicate all accessible objects using a mutation log to bring the replicas up-to-date
with changes made by the mutator.

An excellent discussion and analysis of the trade-offs between work-based and
time-based incremental collectors appears in [5]. Our work, although done inde-
pendently and in a very different context than that of [5], is quite heavily influenced
by it, presentation-wise. Given the different semantics (copying versus sharing) of
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concurrency in ERLANG and Java, and the different compiler and runtime system
implementation technologies involved in Erlang/OTP and in Jikes RVM, it is very
difficult to do a fair comparison between the Metronome (the collector of [5]) and
our incremental collector. As a rather philosophical difference, we do not ask the
user to guide the incremental collector by specifying the maximum amount of si-
multaneously live data or the peak allocation rate over the time interval of a garbage
collection. More importantly, it appears that our system is able to achieve signif-
icantly lower pause times and better mutator utilization than the Metronome. We
believe this can mostly be attributed to the memory allocation strategy of the hy-
brid runtime system architecture which is local-by-default. On the other hand, the
utilization of our collector is not as consistent as that of [5] for adversarial, syn-
thetic programs,7 but then again we are interleaving the collector and the mutator
in a much finer-grained manner (e.g., collecting just 2 words) or we are forcing our
collector to run in a considerably smaller collector quantum (1ms versus 22.2ms
which [5] uses).
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